A Generalization of the Regularization Method to the Singularly Perturbed Integro-Differential Equations With Partial Derivatives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03-16

AUTHORS

A. A. Bobodzhanov, V. F. Safonov

ABSTRACT

We generalize the Lomov’s regularization method to partial integro-differential equations. It turns out that the procedure for regularization and the construction of a regularized asymptotic solution essentially depend on the type of the integral operator. The most difficult is the case, when the upper limit of the integral is not a variable of differentiation. In this paper, we consider its scalar option. For the integral operator with the upper limit coinciding with the variable of differentiation, we investigate the vector case. In both cases, we develop an algorithm for constructing a regularized asymptotic solution and carry out its full substantiation. Based on the analysis of the principal term of the asymptotic solution, we study the limit in solution of the original problem (with the small parameter tending to zero) and solve the so-called initialization problem about allocation of a class of input data, in which the passage to the limit takes place on the whole considered period of time, including the area of boundary layer. More... »

PAGES

6-17

References to SciGraph publications

  • 2007-04. The Cauchy problem for a singularly perturbed integro-differential Fredholm equation in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2006-05. The Cauchy problem for a singularly perturbed Volterra integro-differential equation in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s1066369x18030027

    DOI

    http://dx.doi.org/10.3103/s1066369x18030027

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101549763


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research University \u201cMPEI\u201d, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "National Research University \u201cMPEI\u201d, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bobodzhanov", 
            "givenName": "A. A.", 
            "id": "sg:person.013520603031.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013520603031.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research University \u201cMPEI\u201d, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "National Research University \u201cMPEI\u201d, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Safonov", 
            "givenName": "V. F.", 
            "id": "sg:person.016601321742.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601321742.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0965542507040082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016340107", 
              "https://doi.org/10.1134/s0965542507040082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542506050046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024811502", 
              "https://doi.org/10.1134/s0965542506050046"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-03-16", 
        "datePublishedReg": "2018-03-16", 
        "description": "We generalize the Lomov\u2019s regularization method to partial integro-differential equations. It turns out that the procedure for regularization and the construction of a regularized asymptotic solution essentially depend on the type of the integral operator. The most difficult is the case, when the upper limit of the integral is not a variable of differentiation. In this paper, we consider its scalar option. For the integral operator with the upper limit coinciding with the variable of differentiation, we investigate the vector case. In both cases, we develop an algorithm for constructing a regularized asymptotic solution and carry out its full substantiation. Based on the analysis of the principal term of the asymptotic solution, we study the limit in solution of the original problem (with the small parameter tending to zero) and solve the so-called initialization problem about allocation of a class of input data, in which the passage to the limit takes place on the whole considered period of time, including the area of boundary layer.", 
        "genre": "article", 
        "id": "sg:pub.10.3103/s1066369x18030027", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295492", 
            "issn": [
              "1066-369X", 
              "1934-810X"
            ], 
            "name": "Russian Mathematics", 
            "publisher": "Allerton Press", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "62"
          }
        ], 
        "keywords": [
          "integro-differential equations", 
          "asymptotic solution", 
          "regularization method", 
          "integral operators", 
          "partial integro-differential equations", 
          "Lomov regularization method", 
          "original problem", 
          "partial derivatives", 
          "vector case", 
          "principal term", 
          "initialization problem", 
          "equations", 
          "operators", 
          "upper limit", 
          "input data", 
          "solution", 
          "boundary layer", 
          "problem", 
          "integrals", 
          "regularization", 
          "generalization", 
          "limit", 
          "variables", 
          "algorithm", 
          "class", 
          "cases", 
          "terms", 
          "allocation", 
          "substantiation", 
          "construction", 
          "derivatives", 
          "layer", 
          "procedure", 
          "period of time", 
          "analysis", 
          "time", 
          "data", 
          "types", 
          "place", 
          "area", 
          "passage", 
          "options", 
          "period", 
          "differentiation", 
          "method", 
          "paper"
        ], 
        "name": "A Generalization of the Regularization Method to the Singularly Perturbed Integro-Differential Equations With Partial Derivatives", 
        "pagination": "6-17", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101549763"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s1066369x18030027"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s1066369x18030027", 
          "https://app.dimensions.ai/details/publication/pub.1101549763"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_754.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.3103/s1066369x18030027"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18030027'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18030027'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18030027'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18030027'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      21 PREDICATES      72 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s1066369x18030027 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6a12fc2031f54b4cb34e5d3f3e370b17
    4 schema:citation sg:pub.10.1134/s0965542506050046
    5 sg:pub.10.1134/s0965542507040082
    6 schema:datePublished 2018-03-16
    7 schema:datePublishedReg 2018-03-16
    8 schema:description We generalize the Lomov’s regularization method to partial integro-differential equations. It turns out that the procedure for regularization and the construction of a regularized asymptotic solution essentially depend on the type of the integral operator. The most difficult is the case, when the upper limit of the integral is not a variable of differentiation. In this paper, we consider its scalar option. For the integral operator with the upper limit coinciding with the variable of differentiation, we investigate the vector case. In both cases, we develop an algorithm for constructing a regularized asymptotic solution and carry out its full substantiation. Based on the analysis of the principal term of the asymptotic solution, we study the limit in solution of the original problem (with the small parameter tending to zero) and solve the so-called initialization problem about allocation of a class of input data, in which the passage to the limit takes place on the whole considered period of time, including the area of boundary layer.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Nf3d20389acbe40b2b3a2c748f3bdd784
    12 Nf68f476a7c514724bc19dd22a6e07ecf
    13 sg:journal.1295492
    14 schema:keywords Lomov regularization method
    15 algorithm
    16 allocation
    17 analysis
    18 area
    19 asymptotic solution
    20 boundary layer
    21 cases
    22 class
    23 construction
    24 data
    25 derivatives
    26 differentiation
    27 equations
    28 generalization
    29 initialization problem
    30 input data
    31 integral operators
    32 integrals
    33 integro-differential equations
    34 layer
    35 limit
    36 method
    37 operators
    38 options
    39 original problem
    40 paper
    41 partial derivatives
    42 partial integro-differential equations
    43 passage
    44 period
    45 period of time
    46 place
    47 principal term
    48 problem
    49 procedure
    50 regularization
    51 regularization method
    52 solution
    53 substantiation
    54 terms
    55 time
    56 types
    57 upper limit
    58 variables
    59 vector case
    60 schema:name A Generalization of the Regularization Method to the Singularly Perturbed Integro-Differential Equations With Partial Derivatives
    61 schema:pagination 6-17
    62 schema:productId N1c3f3fd9fed84ecea1e27364deb973a4
    63 N6bcf2fb5f1dd4410a7ea53cb677c252c
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101549763
    65 https://doi.org/10.3103/s1066369x18030027
    66 schema:sdDatePublished 2022-12-01T06:36
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N1b26b616c6ca43c795e300dd0e9362b6
    69 schema:url https://doi.org/10.3103/s1066369x18030027
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N1b26b616c6ca43c795e300dd0e9362b6 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N1c3f3fd9fed84ecea1e27364deb973a4 schema:name dimensions_id
    76 schema:value pub.1101549763
    77 rdf:type schema:PropertyValue
    78 N2b5c3de0de634c2da315867f91ad5ed4 rdf:first sg:person.016601321742.43
    79 rdf:rest rdf:nil
    80 N6a12fc2031f54b4cb34e5d3f3e370b17 rdf:first sg:person.013520603031.94
    81 rdf:rest N2b5c3de0de634c2da315867f91ad5ed4
    82 N6bcf2fb5f1dd4410a7ea53cb677c252c schema:name doi
    83 schema:value 10.3103/s1066369x18030027
    84 rdf:type schema:PropertyValue
    85 Nf3d20389acbe40b2b3a2c748f3bdd784 schema:volumeNumber 62
    86 rdf:type schema:PublicationVolume
    87 Nf68f476a7c514724bc19dd22a6e07ecf schema:issueNumber 3
    88 rdf:type schema:PublicationIssue
    89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Mathematical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Pure Mathematics
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1295492 schema:issn 1066-369X
    96 1934-810X
    97 schema:name Russian Mathematics
    98 schema:publisher Allerton Press
    99 rdf:type schema:Periodical
    100 sg:person.013520603031.94 schema:affiliation grid-institutes:grid.77852.3f
    101 schema:familyName Bobodzhanov
    102 schema:givenName A. A.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013520603031.94
    104 rdf:type schema:Person
    105 sg:person.016601321742.43 schema:affiliation grid-institutes:grid.77852.3f
    106 schema:familyName Safonov
    107 schema:givenName V. F.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601321742.43
    109 rdf:type schema:Person
    110 sg:pub.10.1134/s0965542506050046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024811502
    111 https://doi.org/10.1134/s0965542506050046
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1134/s0965542507040082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016340107
    114 https://doi.org/10.1134/s0965542507040082
    115 rdf:type schema:CreativeWork
    116 grid-institutes:grid.77852.3f schema:alternateName National Research University “MPEI”, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia
    117 schema:name National Research University “MPEI”, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia
    118 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...