Approximate analytic solution of heat conduction problems with a mismatch between initial and boundary conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03-12

AUTHORS

E. V. Stefanyuk, V. A. Kudinov

ABSTRACT

We consider a heat conduction problem for an infinite plate with a mismatch between initial and boundary conditions. Using the method of integral relations, we obtain an approximate analytic solution to this problem by determining the temperature perturbation front. The solution has a simple form of an algebraic polynomial without special functions. It allows us to determine the temperature state of the plate in the full range of the Fourier numbers (0≤F<∞) and is especially effective for very small time intervals. More... »

PAGES

55-61

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1066369x10040079

DOI

http://dx.doi.org/10.3103/s1066369x10040079

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011087420


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanyuk", 
        "givenName": "E. V.", 
        "id": "sg:person.010637046537.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-03-12", 
    "datePublishedReg": "2010-03-12", 
    "description": "We consider a heat conduction problem for an infinite plate with a mismatch between initial and boundary conditions. Using the method of integral relations, we obtain an approximate analytic solution to this problem by determining the temperature perturbation front. The solution has a simple form of an algebraic polynomial without special functions. It allows us to determine the temperature state of the plate in the full range of the Fourier numbers (0\u2264F<\u221e) and is especially effective for very small time intervals.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1066369x10040079", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295492", 
        "issn": [
          "0021-3446", 
          "1934-810X"
        ], 
        "name": "Russian Mathematics", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "approximate analytic solution", 
      "heat conduction problem", 
      "analytic solution", 
      "conduction problem", 
      "boundary conditions", 
      "temperature perturbation front", 
      "small time interval", 
      "algebraic polynomials", 
      "perturbation front", 
      "special functions", 
      "integral relations", 
      "simple form", 
      "problem", 
      "solution", 
      "infinite plate", 
      "polynomials", 
      "temperature state", 
      "time interval", 
      "Fourier number", 
      "conditions", 
      "function", 
      "mismatch", 
      "form", 
      "number", 
      "full range", 
      "front", 
      "intervals", 
      "plate", 
      "state", 
      "relation", 
      "range", 
      "method"
    ], 
    "name": "Approximate analytic solution of heat conduction problems with a mismatch between initial and boundary conditions", 
    "pagination": "55-61", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011087420"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1066369x10040079"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1066369x10040079", 
      "https://app.dimensions.ai/details/publication/pub.1011087420"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_518.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1066369x10040079"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x10040079'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x10040079'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x10040079'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x10040079'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      57 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1066369x10040079 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N19afc9417bbb40879984d79584ee8891
4 schema:datePublished 2010-03-12
5 schema:datePublishedReg 2010-03-12
6 schema:description We consider a heat conduction problem for an infinite plate with a mismatch between initial and boundary conditions. Using the method of integral relations, we obtain an approximate analytic solution to this problem by determining the temperature perturbation front. The solution has a simple form of an algebraic polynomial without special functions. It allows us to determine the temperature state of the plate in the full range of the Fourier numbers (0≤F<∞) and is especially effective for very small time intervals.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc37c57bea8eb4a3f96b3b6be080d9b8e
11 Ndaf11b216aa346188d70a600ff878d1a
12 sg:journal.1295492
13 schema:keywords Fourier number
14 algebraic polynomials
15 analytic solution
16 approximate analytic solution
17 boundary conditions
18 conditions
19 conduction problem
20 form
21 front
22 full range
23 function
24 heat conduction problem
25 infinite plate
26 integral relations
27 intervals
28 method
29 mismatch
30 number
31 perturbation front
32 plate
33 polynomials
34 problem
35 range
36 relation
37 simple form
38 small time interval
39 solution
40 special functions
41 state
42 temperature perturbation front
43 temperature state
44 time interval
45 schema:name Approximate analytic solution of heat conduction problems with a mismatch between initial and boundary conditions
46 schema:pagination 55-61
47 schema:productId N48e81116785040f38b4d7b5f7bb653cf
48 N69dff4d2646e4f19ba8156fb4321543f
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011087420
50 https://doi.org/10.3103/s1066369x10040079
51 schema:sdDatePublished 2021-12-01T19:23
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N0e337d24d1d145f4afa68f6ae9800619
54 schema:url https://doi.org/10.3103/s1066369x10040079
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0e337d24d1d145f4afa68f6ae9800619 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N19afc9417bbb40879984d79584ee8891 rdf:first sg:person.010637046537.80
61 rdf:rest N4f8a8c20564f4a2385fb39500bb270ce
62 N48e81116785040f38b4d7b5f7bb653cf schema:name dimensions_id
63 schema:value pub.1011087420
64 rdf:type schema:PropertyValue
65 N4f8a8c20564f4a2385fb39500bb270ce rdf:first sg:person.014602635070.00
66 rdf:rest rdf:nil
67 N69dff4d2646e4f19ba8156fb4321543f schema:name doi
68 schema:value 10.3103/s1066369x10040079
69 rdf:type schema:PropertyValue
70 Nc37c57bea8eb4a3f96b3b6be080d9b8e schema:issueNumber 4
71 rdf:type schema:PublicationIssue
72 Ndaf11b216aa346188d70a600ff878d1a schema:volumeNumber 54
73 rdf:type schema:PublicationVolume
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1295492 schema:issn 0021-3446
81 1934-810X
82 schema:name Russian Mathematics
83 schema:publisher Allerton Press
84 rdf:type schema:Periodical
85 sg:person.010637046537.80 schema:affiliation grid-institutes:grid.445792.9
86 schema:familyName Stefanyuk
87 schema:givenName E. V.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80
89 rdf:type schema:Person
90 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
91 schema:familyName Kudinov
92 schema:givenName V. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
94 rdf:type schema:Person
95 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia
96 schema:name Samara State Technical University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...