Brittle nanomaterials: Hardness and superplasticity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-09

AUTHORS

R. A. Andrievski

ABSTRACT

The data on the hardness and superplasticity of nanomaterials based on brittle high-melting point compounds such as carbides, nitrides, borides, intermetallics, and oxides are analyzed. The nonmonotonic change in the hardness with a change in the nanolayer thickness in multilayer films and the grain size in bulk nanomaterials is discussed. The fracture of these materials has intercrystalline character. However, residual plastic deformation is observed in some cases, for example, in for nanocolumnar TiN coatings and SiC single-crystal nanowire. The nanostructured approach was very successful in the development of nanocomposites with high-strain-rate superplasticity (∼10−2 s−1, T = 1400°C). The poorly investigated problems are pointed. More... »

PAGES

1222

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s106287380909010x

DOI

http://dx.doi.org/10.3103/s106287380909010x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037346083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andrievski", 
        "givenName": "R. A.", 
        "id": "sg:person.013433153367.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013433153367.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.1992.0901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052781090", 
          "https://doi.org/10.1557/jmr.1992.0901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003554423", 
          "https://doi.org/10.1038/19486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01447023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001239508", 
          "https://doi.org/10.1007/bf01447023"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-09", 
    "datePublishedReg": "2009-09-01", 
    "description": "The data on the hardness and superplasticity of nanomaterials based on brittle high-melting point compounds such as carbides, nitrides, borides, intermetallics, and oxides are analyzed. The nonmonotonic change in the hardness with a change in the nanolayer thickness in multilayer films and the grain size in bulk nanomaterials is discussed. The fracture of these materials has intercrystalline character. However, residual plastic deformation is observed in some cases, for example, in for nanocolumnar TiN coatings and SiC single-crystal nanowire. The nanostructured approach was very successful in the development of nanocomposites with high-strain-rate superplasticity (\u223c10\u22122 s\u22121, T = 1400\u00b0C). The poorly investigated problems are pointed.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s106287380909010x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136440", 
        "issn": [
          "1062-8738", 
          "1934-9432"
        ], 
        "name": "Bulletin of the Russian Academy of Sciences: Physics", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "keywords": [
      "high-melting point compounds", 
      "residual plastic deformation", 
      "development of nanocomposites", 
      "intercrystalline character", 
      "rate superplasticity", 
      "TiN coatings", 
      "plastic deformation", 
      "bulk nanomaterials", 
      "nanostructured approach", 
      "nanolayer thickness", 
      "multilayer films", 
      "single-crystal nanowires", 
      "superplasticity", 
      "grain size", 
      "point compounds", 
      "hardness", 
      "carbide", 
      "nitride", 
      "coatings", 
      "borides", 
      "nanocomposites", 
      "nanomaterials", 
      "intermetallics", 
      "deformation", 
      "nanowires", 
      "films", 
      "nonmonotonic change", 
      "thickness", 
      "oxide", 
      "materials", 
      "fractures", 
      "size", 
      "problem", 
      "example", 
      "approach", 
      "changes", 
      "development", 
      "data", 
      "cases", 
      "compounds", 
      "character", 
      "superplasticity of nanomaterials", 
      "brittle high-melting point compounds", 
      "nanocolumnar TiN coatings", 
      "SiC single-crystal nanowire"
    ], 
    "name": "Brittle nanomaterials: Hardness and superplasticity", 
    "pagination": "1222", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037346083"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s106287380909010x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s106287380909010x", 
      "https://app.dimensions.ai/details/publication/pub.1037346083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s106287380909010x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s106287380909010x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s106287380909010x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s106287380909010x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s106287380909010x'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      22 PREDICATES      74 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s106287380909010x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N957c9f8565b245d98b06de124aa7cbfa
4 schema:citation sg:pub.10.1007/bf01447023
5 sg:pub.10.1038/19486
6 sg:pub.10.1557/jmr.1992.0901
7 schema:datePublished 2009-09
8 schema:datePublishedReg 2009-09-01
9 schema:description The data on the hardness and superplasticity of nanomaterials based on brittle high-melting point compounds such as carbides, nitrides, borides, intermetallics, and oxides are analyzed. The nonmonotonic change in the hardness with a change in the nanolayer thickness in multilayer films and the grain size in bulk nanomaterials is discussed. The fracture of these materials has intercrystalline character. However, residual plastic deformation is observed in some cases, for example, in for nanocolumnar TiN coatings and SiC single-crystal nanowire. The nanostructured approach was very successful in the development of nanocomposites with high-strain-rate superplasticity (∼10−2 s−1, T = 1400°C). The poorly investigated problems are pointed.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nf4c8ed9baf354a54a67d27f734bb1323
14 Nfe770f3bd03144769d5fce7e41ebeab6
15 sg:journal.1136440
16 schema:keywords SiC single-crystal nanowire
17 TiN coatings
18 approach
19 borides
20 brittle high-melting point compounds
21 bulk nanomaterials
22 carbide
23 cases
24 changes
25 character
26 coatings
27 compounds
28 data
29 deformation
30 development
31 development of nanocomposites
32 example
33 films
34 fractures
35 grain size
36 hardness
37 high-melting point compounds
38 intercrystalline character
39 intermetallics
40 materials
41 multilayer films
42 nanocolumnar TiN coatings
43 nanocomposites
44 nanolayer thickness
45 nanomaterials
46 nanostructured approach
47 nanowires
48 nitride
49 nonmonotonic change
50 oxide
51 plastic deformation
52 point compounds
53 problem
54 rate superplasticity
55 residual plastic deformation
56 single-crystal nanowires
57 size
58 superplasticity
59 superplasticity of nanomaterials
60 thickness
61 schema:name Brittle nanomaterials: Hardness and superplasticity
62 schema:pagination 1222
63 schema:productId Nb867d05911dc46009be3150c3610eeaf
64 Nf69969f5b3434f44a695ddb70bcfdb77
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037346083
66 https://doi.org/10.3103/s106287380909010x
67 schema:sdDatePublished 2022-01-01T18:21
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N8f6a4ed7e2654fe0a3b9cb2b012727a2
70 schema:url https://doi.org/10.3103/s106287380909010x
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N8f6a4ed7e2654fe0a3b9cb2b012727a2 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N957c9f8565b245d98b06de124aa7cbfa rdf:first sg:person.013433153367.30
77 rdf:rest rdf:nil
78 Nb867d05911dc46009be3150c3610eeaf schema:name dimensions_id
79 schema:value pub.1037346083
80 rdf:type schema:PropertyValue
81 Nf4c8ed9baf354a54a67d27f734bb1323 schema:issueNumber 9
82 rdf:type schema:PublicationIssue
83 Nf69969f5b3434f44a695ddb70bcfdb77 schema:name doi
84 schema:value 10.3103/s106287380909010x
85 rdf:type schema:PropertyValue
86 Nfe770f3bd03144769d5fce7e41ebeab6 schema:volumeNumber 73
87 rdf:type schema:PublicationVolume
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1136440 schema:issn 1062-8738
95 1934-9432
96 schema:name Bulletin of the Russian Academy of Sciences: Physics
97 schema:publisher Allerton Press
98 rdf:type schema:Periodical
99 sg:person.013433153367.30 schema:affiliation grid-institutes:grid.418949.9
100 schema:familyName Andrievski
101 schema:givenName R. A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013433153367.30
103 rdf:type schema:Person
104 sg:pub.10.1007/bf01447023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001239508
105 https://doi.org/10.1007/bf01447023
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/19486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003554423
108 https://doi.org/10.1038/19486
109 rdf:type schema:CreativeWork
110 sg:pub.10.1557/jmr.1992.0901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052781090
111 https://doi.org/10.1557/jmr.1992.0901
112 rdf:type schema:CreativeWork
113 grid-institutes:grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
114 schema:name Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...