Acceleration of multilayer perceptron training with CUDA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10

AUTHORS

M. S. Prokudin

ABSTRACT

CUDA acceleration of Broyden-Fletcher-Goldfarb-Shanno (BFGS) training algorithm is described. Speedup in comparison with reference single thread CPU realization is ∼18.

PAGES

224-227

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1060992x13040085

DOI

http://dx.doi.org/10.3103/s1060992x13040085

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032565659


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokudin", 
        "givenName": "M. S.", 
        "id": "sg:person.015223320541.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015223320541.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "CUDA acceleration of Broyden-Fletcher-Goldfarb-Shanno (BFGS) training algorithm is described. Speedup in comparison with reference single thread CPU realization is \u223c18.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1060992x13040085", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136839", 
        "issn": [
          "1060-992X", 
          "1934-7898"
        ], 
        "name": "Optical Memory and Neural Networks", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "acceleration", 
      "comparison", 
      "realization", 
      "multilayer perceptron", 
      "Broyden-Fletcher", 
      "training algorithm", 
      "algorithm", 
      "perceptron", 
      "CUDA", 
      "Goldfarb-Shanno training algorithm", 
      "reference single thread CPU realization", 
      "single thread CPU realization", 
      "thread CPU realization", 
      "CPU realization"
    ], 
    "name": "Acceleration of multilayer perceptron training with CUDA", 
    "pagination": "224-227", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032565659"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1060992x13040085"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1060992x13040085", 
      "https://app.dimensions.ai/details/publication/pub.1032565659"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_586.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1060992x13040085"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1060992x13040085'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1060992x13040085'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1060992x13040085'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1060992x13040085'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      20 PREDICATES      38 URIs      32 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1060992x13040085 schema:author Ndec9e4df1f0e4d18a78daa457d006929
2 schema:datePublished 2013-10
3 schema:datePublishedReg 2013-10-01
4 schema:description CUDA acceleration of Broyden-Fletcher-Goldfarb-Shanno (BFGS) training algorithm is described. Speedup in comparison with reference single thread CPU realization is ∼18.
5 schema:genre article
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N2895bec298b64758b25f85dcebf39d08
9 Ncd51d2217df54f95ae278936f66ceec5
10 sg:journal.1136839
11 schema:keywords Broyden-Fletcher
12 CPU realization
13 CUDA
14 Goldfarb-Shanno training algorithm
15 acceleration
16 algorithm
17 comparison
18 multilayer perceptron
19 perceptron
20 realization
21 reference single thread CPU realization
22 single thread CPU realization
23 thread CPU realization
24 training algorithm
25 schema:name Acceleration of multilayer perceptron training with CUDA
26 schema:pagination 224-227
27 schema:productId Nd09f4913de5443758da3f1ed5d798708
28 Nd2e4a5be32744d4e812de3aa12c3de24
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032565659
30 https://doi.org/10.3103/s1060992x13040085
31 schema:sdDatePublished 2022-01-01T18:29
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N4df83e196d1349adbfc1d193eaef726e
34 schema:url https://doi.org/10.3103/s1060992x13040085
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2895bec298b64758b25f85dcebf39d08 schema:issueNumber 4
39 rdf:type schema:PublicationIssue
40 N4df83e196d1349adbfc1d193eaef726e schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Ncd51d2217df54f95ae278936f66ceec5 schema:volumeNumber 22
43 rdf:type schema:PublicationVolume
44 Nd09f4913de5443758da3f1ed5d798708 schema:name dimensions_id
45 schema:value pub.1032565659
46 rdf:type schema:PropertyValue
47 Nd2e4a5be32744d4e812de3aa12c3de24 schema:name doi
48 schema:value 10.3103/s1060992x13040085
49 rdf:type schema:PropertyValue
50 Ndec9e4df1f0e4d18a78daa457d006929 rdf:first sg:person.015223320541.61
51 rdf:rest rdf:nil
52 sg:journal.1136839 schema:issn 1060-992X
53 1934-7898
54 schema:name Optical Memory and Neural Networks
55 schema:publisher Allerton Press
56 rdf:type schema:Periodical
57 sg:person.015223320541.61 schema:affiliation grid-institutes:grid.21626.31
58 schema:familyName Prokudin
59 schema:givenName M. S.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015223320541.61
61 rdf:type schema:Person
62 grid-institutes:grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics, Moscow, Russia
63 schema:name Institute for Theoretical and Experimental Physics, Moscow, Russia
64 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...