Ontology type: schema:ScholarlyArticle
2016-01
AUTHORSV. A. Kudinov, A. V. Eremin, E. V. Stefanyuk
ABSTRACTThe exact analytical solution of the nonstationary heat conduction problem with a nonlinear internal heat source at the nonsymmetric third-type boundary conditions was obtained by the method of variable separation. The relations between the boundary condition parameters and a heat source separating the stationary processes from processes of an unlimited temperature increase (thermal explosion) were found. For known physical properties of medium, the maximum allowable value of the specific power of a heat source has been found. If nonsymmetric boundary conditions are exceeded on wall surfaces, it can lead to thermal destruction. More... »
PAGES38-43
http://scigraph.springernature.com/pub.10.3103/s1052618816010088
DOIhttp://dx.doi.org/10.3103/s1052618816010088
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039582935
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Samara State Technical University, Samara, Russia",
"id": "http://www.grid.ac/institutes/grid.445792.9",
"name": [
"Samara State Technical University, Samara, Russia"
],
"type": "Organization"
},
"familyName": "Kudinov",
"givenName": "V. A.",
"id": "sg:person.014602635070.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Samara State Technical University, Samara, Russia",
"id": "http://www.grid.ac/institutes/grid.445792.9",
"name": [
"Samara State Technical University, Samara, Russia"
],
"type": "Organization"
},
"familyName": "Eremin",
"givenName": "A. V.",
"id": "sg:person.015401043035.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Samara State Technical University, Samara, Russia",
"id": "http://www.grid.ac/institutes/grid.445792.9",
"name": [
"Samara State Technical University, Samara, Russia"
],
"type": "Organization"
},
"familyName": "Stefanyuk",
"givenName": "E. V.",
"id": "sg:person.010637046537.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80"
],
"type": "Person"
}
],
"datePublished": "2016-01",
"datePublishedReg": "2016-01-01",
"description": "The exact analytical solution of the nonstationary heat conduction problem with a nonlinear internal heat source at the nonsymmetric third-type boundary conditions was obtained by the method of variable separation. The relations between the boundary condition parameters and a heat source separating the stationary processes from processes of an unlimited temperature increase (thermal explosion) were found. For known physical properties of medium, the maximum allowable value of the specific power of a heat source has been found. If nonsymmetric boundary conditions are exceeded on wall surfaces, it can lead to thermal destruction.",
"genre": "article",
"id": "sg:pub.10.3103/s1052618816010088",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1135895",
"issn": [
"1052-6188",
"1934-9394"
],
"name": "Journal of Machinery Manufacture and Reliability",
"publisher": "Allerton Press",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "45"
}
],
"keywords": [
"heat source",
"internal heat source",
"boundary conditions",
"nonlinear heat source",
"third type boundary conditions",
"heat conduction problem",
"nonstationary heat conduction problem",
"maximum allowable value",
"boundary condition parameters",
"specific power",
"thermal explosion",
"wall surface",
"allowable value",
"conduction problem",
"exact analytical solution",
"condition parameters",
"analytical solution",
"nonsymmetric boundary conditions",
"thermal destruction",
"temperature increase",
"critical conditions",
"physical properties",
"variable separation",
"conditions",
"plate",
"surface",
"process",
"source",
"properties",
"power",
"separation",
"parameters",
"explosion",
"solution",
"stationary processes",
"method",
"problem",
"values",
"increase",
"medium",
"destruction",
"relation"
],
"name": "Critical conditions for thermal explosion in a plate with a nonlinear heat source",
"pagination": "38-43",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039582935"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.3103/s1052618816010088"
]
}
],
"sameAs": [
"https://doi.org/10.3103/s1052618816010088",
"https://app.dimensions.ai/details/publication/pub.1039582935"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_701.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.3103/s1052618816010088"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1052618816010088'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1052618816010088'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1052618816010088'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1052618816010088'
This table displays all metadata directly associated to this object as RDF triples.
114 TRIPLES
21 PREDICATES
68 URIs
60 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.3103/s1052618816010088 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | Nebc83ed0f9be480294d6db65a27753ae |
4 | ″ | schema:datePublished | 2016-01 |
5 | ″ | schema:datePublishedReg | 2016-01-01 |
6 | ″ | schema:description | The exact analytical solution of the nonstationary heat conduction problem with a nonlinear internal heat source at the nonsymmetric third-type boundary conditions was obtained by the method of variable separation. The relations between the boundary condition parameters and a heat source separating the stationary processes from processes of an unlimited temperature increase (thermal explosion) were found. For known physical properties of medium, the maximum allowable value of the specific power of a heat source has been found. If nonsymmetric boundary conditions are exceeded on wall surfaces, it can lead to thermal destruction. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N501384f8f344492ebd9cfa03387668a5 |
11 | ″ | ″ | Na8f6844b12e54c69a2763337bfce5fed |
12 | ″ | ″ | sg:journal.1135895 |
13 | ″ | schema:keywords | allowable value |
14 | ″ | ″ | analytical solution |
15 | ″ | ″ | boundary condition parameters |
16 | ″ | ″ | boundary conditions |
17 | ″ | ″ | condition parameters |
18 | ″ | ″ | conditions |
19 | ″ | ″ | conduction problem |
20 | ″ | ″ | critical conditions |
21 | ″ | ″ | destruction |
22 | ″ | ″ | exact analytical solution |
23 | ″ | ″ | explosion |
24 | ″ | ″ | heat conduction problem |
25 | ″ | ″ | heat source |
26 | ″ | ″ | increase |
27 | ″ | ″ | internal heat source |
28 | ″ | ″ | maximum allowable value |
29 | ″ | ″ | medium |
30 | ″ | ″ | method |
31 | ″ | ″ | nonlinear heat source |
32 | ″ | ″ | nonstationary heat conduction problem |
33 | ″ | ″ | nonsymmetric boundary conditions |
34 | ″ | ″ | parameters |
35 | ″ | ″ | physical properties |
36 | ″ | ″ | plate |
37 | ″ | ″ | power |
38 | ″ | ″ | problem |
39 | ″ | ″ | process |
40 | ″ | ″ | properties |
41 | ″ | ″ | relation |
42 | ″ | ″ | separation |
43 | ″ | ″ | solution |
44 | ″ | ″ | source |
45 | ″ | ″ | specific power |
46 | ″ | ″ | stationary processes |
47 | ″ | ″ | surface |
48 | ″ | ″ | temperature increase |
49 | ″ | ″ | thermal destruction |
50 | ″ | ″ | thermal explosion |
51 | ″ | ″ | third type boundary conditions |
52 | ″ | ″ | values |
53 | ″ | ″ | variable separation |
54 | ″ | ″ | wall surface |
55 | ″ | schema:name | Critical conditions for thermal explosion in a plate with a nonlinear heat source |
56 | ″ | schema:pagination | 38-43 |
57 | ″ | schema:productId | Nd38c184caec44868aab1263cb2e2c619 |
58 | ″ | ″ | Nf7cdad4d22ef45b5bf1abe635eba0b3c |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039582935 |
60 | ″ | ″ | https://doi.org/10.3103/s1052618816010088 |
61 | ″ | schema:sdDatePublished | 2022-05-20T07:32 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | N41a1da4bfff045f288d3e409ffd9a5a8 |
64 | ″ | schema:url | https://doi.org/10.3103/s1052618816010088 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | articles |
67 | ″ | rdf:type | schema:ScholarlyArticle |
68 | N21e463c85ffb467a96c219608acb17c8 | rdf:first | sg:person.010637046537.80 |
69 | ″ | rdf:rest | rdf:nil |
70 | N41a1da4bfff045f288d3e409ffd9a5a8 | schema:name | Springer Nature - SN SciGraph project |
71 | ″ | rdf:type | schema:Organization |
72 | N501384f8f344492ebd9cfa03387668a5 | schema:issueNumber | 1 |
73 | ″ | rdf:type | schema:PublicationIssue |
74 | N56f6927ad8e24ac78862031696bbcfbc | rdf:first | sg:person.015401043035.14 |
75 | ″ | rdf:rest | N21e463c85ffb467a96c219608acb17c8 |
76 | Na8f6844b12e54c69a2763337bfce5fed | schema:volumeNumber | 45 |
77 | ″ | rdf:type | schema:PublicationVolume |
78 | Nd38c184caec44868aab1263cb2e2c619 | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1039582935 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Nebc83ed0f9be480294d6db65a27753ae | rdf:first | sg:person.014602635070.00 |
82 | ″ | rdf:rest | N56f6927ad8e24ac78862031696bbcfbc |
83 | Nf7cdad4d22ef45b5bf1abe635eba0b3c | schema:name | doi |
84 | ″ | schema:value | 10.3103/s1052618816010088 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Engineering |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Interdisciplinary Engineering |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | sg:journal.1135895 | schema:issn | 1052-6188 |
93 | ″ | ″ | 1934-9394 |
94 | ″ | schema:name | Journal of Machinery Manufacture and Reliability |
95 | ″ | schema:publisher | Allerton Press |
96 | ″ | rdf:type | schema:Periodical |
97 | sg:person.010637046537.80 | schema:affiliation | grid-institutes:grid.445792.9 |
98 | ″ | schema:familyName | Stefanyuk |
99 | ″ | schema:givenName | E. V. |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80 |
101 | ″ | rdf:type | schema:Person |
102 | sg:person.014602635070.00 | schema:affiliation | grid-institutes:grid.445792.9 |
103 | ″ | schema:familyName | Kudinov |
104 | ″ | schema:givenName | V. A. |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.015401043035.14 | schema:affiliation | grid-institutes:grid.445792.9 |
108 | ″ | schema:familyName | Eremin |
109 | ″ | schema:givenName | A. V. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14 |
111 | ″ | rdf:type | schema:Person |
112 | grid-institutes:grid.445792.9 | schema:alternateName | Samara State Technical University, Samara, Russia |
113 | ″ | schema:name | Samara State Technical University, Samara, Russia |
114 | ″ | rdf:type | schema:Organization |