Localization of plastic deformation in alloyed γ-iron single crystals electrolytically saturated with hydrogen View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

G. V. Shlyakhova, S. A. Barannikova, L. B. Zuev, D. A. Kosinov

ABSTRACT

On chromonickel γ-iron single crystals with orientation and low packing-defect density, the plastic-flow localization during electrolytic saturation with hydrogen within a three-electrode electrochemical cell is investigated, with constant controllable cathode potential. On the plastic-flow curve for the extension of single crystals in the initial state (without hydrogen), beyond the transition from elasticity to developed plastic flow, linear strain hardening and then parabolic (Taylor) strain hardening may be observed. The plastic-flow curve for single crystals of austenitic steel saturated with hydrogen includes a small projection and a flow trough, stages of linear strain hardening and parabolic strain hardening, and a prefailure stage. Saturation of single crystals with hydrogen reduces the yield point, increases the plasticity to failure by a factor of 1.3, and suppresses necking in crystals oriented for multiple slip. By double-exposure speckle photography, the basic types of plastic flow location at different stages of strain hardening may be identified, in the presence and absence of hydrogen, and the corresponding parameters may be determined. Hydrogenation of chromonickel γ-iron single crystals intensifies the localization of deformation and leads to considerable changes in the characteristic distances between the plastic-shear bands and the localized-strain zones. More... »

PAGES

480-484

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0967091213080147

DOI

http://dx.doi.org/10.3103/s0967091213080147

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037594586


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia", 
            "Seversk Technological Institute, Moscow Engineering-Physics Institute, Seversk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shlyakhova", 
        "givenName": "G. V.", 
        "id": "sg:person.014266720345.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266720345.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia", 
            "Tomsk State University, Tomsk, Russia", 
            "Tomsk State Architectural and Construction University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barannikova", 
        "givenName": "S. A.", 
        "id": "sg:person.015513427543.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513427543.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia", 
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuev", 
        "givenName": "L. B.", 
        "id": "sg:person.015174075441.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174075441.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siberian State Industrial University", 
          "id": "https://www.grid.ac/institutes/grid.445330.5", 
          "name": [
            "Siberian State Industrial University, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosinov", 
        "givenName": "D. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0997-7538(01)01179-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002975068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.484526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035458193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(88)90274-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042681005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(88)90274-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042681005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)90975-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050324872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)90975-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050324872"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08", 
    "datePublishedReg": "2013-08-01", 
    "description": "On chromonickel \u03b3-iron single crystals with orientation and low packing-defect density, the plastic-flow localization during electrolytic saturation with hydrogen within a three-electrode electrochemical cell is investigated, with constant controllable cathode potential. On the plastic-flow curve for the extension of single crystals in the initial state (without hydrogen), beyond the transition from elasticity to developed plastic flow, linear strain hardening and then parabolic (Taylor) strain hardening may be observed. The plastic-flow curve for single crystals of austenitic steel saturated with hydrogen includes a small projection and a flow trough, stages of linear strain hardening and parabolic strain hardening, and a prefailure stage. Saturation of single crystals with hydrogen reduces the yield point, increases the plasticity to failure by a factor of 1.3, and suppresses necking in crystals oriented for multiple slip. By double-exposure speckle photography, the basic types of plastic flow location at different stages of strain hardening may be identified, in the presence and absence of hydrogen, and the corresponding parameters may be determined. Hydrogenation of chromonickel \u03b3-iron single crystals intensifies the localization of deformation and leads to considerable changes in the characteristic distances between the plastic-shear bands and the localized-strain zones.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0967091213080147", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135930", 
        "issn": [
          "0967-0912", 
          "1935-0988"
        ], 
        "name": "Steel in Translation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Localization of plastic deformation in alloyed \u03b3-iron single crystals electrolytically saturated with hydrogen", 
    "pagination": "480-484", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3166ffea4b15137bcd98743f068a0230ddb0c6a9a54fa51a2360c3a3453930b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0967091213080147"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037594586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0967091213080147", 
      "https://app.dimensions.ai/details/publication/pub.1037594586"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103/S0967091213080147"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0967091213080147'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0967091213080147'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0967091213080147'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0967091213080147'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0967091213080147 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7b22a36474fb477abb83e6a9604ec370
4 schema:citation https://doi.org/10.1016/0001-6160(88)90274-x
5 https://doi.org/10.1016/0921-5093(94)90975-x
6 https://doi.org/10.1016/s0997-7538(01)01179-2
7 https://doi.org/10.1117/12.484526
8 schema:datePublished 2013-08
9 schema:datePublishedReg 2013-08-01
10 schema:description On chromonickel γ-iron single crystals with orientation and low packing-defect density, the plastic-flow localization during electrolytic saturation with hydrogen within a three-electrode electrochemical cell is investigated, with constant controllable cathode potential. On the plastic-flow curve for the extension of single crystals in the initial state (without hydrogen), beyond the transition from elasticity to developed plastic flow, linear strain hardening and then parabolic (Taylor) strain hardening may be observed. The plastic-flow curve for single crystals of austenitic steel saturated with hydrogen includes a small projection and a flow trough, stages of linear strain hardening and parabolic strain hardening, and a prefailure stage. Saturation of single crystals with hydrogen reduces the yield point, increases the plasticity to failure by a factor of 1.3, and suppresses necking in crystals oriented for multiple slip. By double-exposure speckle photography, the basic types of plastic flow location at different stages of strain hardening may be identified, in the presence and absence of hydrogen, and the corresponding parameters may be determined. Hydrogenation of chromonickel γ-iron single crystals intensifies the localization of deformation and leads to considerable changes in the characteristic distances between the plastic-shear bands and the localized-strain zones.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N5c28d0b8da994872838473334c5eab92
15 N9d03d1af139049b392b8a296f6c7e970
16 sg:journal.1135930
17 schema:name Localization of plastic deformation in alloyed γ-iron single crystals electrolytically saturated with hydrogen
18 schema:pagination 480-484
19 schema:productId N3336b734ae0e4fc18e3706effea1fd55
20 N510f4885d3194c3fb19ac1a1f01bbe41
21 N62fd428ea32a42bdb3acfee1e3b88b7c
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037594586
23 https://doi.org/10.3103/s0967091213080147
24 schema:sdDatePublished 2019-04-10T23:23
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nd84296fd77c74eb18a81f9d22179083e
27 schema:url http://link.springer.com/10.3103/S0967091213080147
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N05c4ec53a3ad4d868c06752510c75018 rdf:first N94ccb1c08b2c4814b3b592b2e00c1262
32 rdf:rest rdf:nil
33 N08bcb884a0d94bb089a2b49e94681596 rdf:first sg:person.015174075441.09
34 rdf:rest N05c4ec53a3ad4d868c06752510c75018
35 N3336b734ae0e4fc18e3706effea1fd55 schema:name readcube_id
36 schema:value b3166ffea4b15137bcd98743f068a0230ddb0c6a9a54fa51a2360c3a3453930b
37 rdf:type schema:PropertyValue
38 N510f4885d3194c3fb19ac1a1f01bbe41 schema:name dimensions_id
39 schema:value pub.1037594586
40 rdf:type schema:PropertyValue
41 N5c28d0b8da994872838473334c5eab92 schema:issueNumber 8
42 rdf:type schema:PublicationIssue
43 N62fd428ea32a42bdb3acfee1e3b88b7c schema:name doi
44 schema:value 10.3103/s0967091213080147
45 rdf:type schema:PropertyValue
46 N7b22a36474fb477abb83e6a9604ec370 rdf:first sg:person.014266720345.29
47 rdf:rest Nfa59689e302f4660b0de78cff1b86166
48 N94ccb1c08b2c4814b3b592b2e00c1262 schema:affiliation https://www.grid.ac/institutes/grid.445330.5
49 schema:familyName Kosinov
50 schema:givenName D. A.
51 rdf:type schema:Person
52 N9d03d1af139049b392b8a296f6c7e970 schema:volumeNumber 43
53 rdf:type schema:PublicationVolume
54 Nd84296fd77c74eb18a81f9d22179083e schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nfa59689e302f4660b0de78cff1b86166 rdf:first sg:person.015513427543.38
57 rdf:rest N08bcb884a0d94bb089a2b49e94681596
58 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
59 schema:name Chemical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
62 schema:name Physical Chemistry (incl. Structural)
63 rdf:type schema:DefinedTerm
64 sg:journal.1135930 schema:issn 0967-0912
65 1935-0988
66 schema:name Steel in Translation
67 rdf:type schema:Periodical
68 sg:person.014266720345.29 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
69 schema:familyName Shlyakhova
70 schema:givenName G. V.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266720345.29
72 rdf:type schema:Person
73 sg:person.015174075441.09 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
74 schema:familyName Zuev
75 schema:givenName L. B.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174075441.09
77 rdf:type schema:Person
78 sg:person.015513427543.38 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
79 schema:familyName Barannikova
80 schema:givenName S. A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513427543.38
82 rdf:type schema:Person
83 https://doi.org/10.1016/0001-6160(88)90274-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042681005
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0921-5093(94)90975-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050324872
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0997-7538(01)01179-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002975068
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1117/12.484526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035458193
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.445330.5 schema:alternateName Siberian State Industrial University
92 schema:name Siberian State Industrial University, Novosibirsk, Russia
93 rdf:type schema:Organization
94 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
95 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
96 Seversk Technological Institute, Moscow Engineering-Physics Institute, Seversk, Russia
97 rdf:type schema:Organization
98 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
99 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
100 Tomsk State Architectural and Construction University, Tomsk, Russia
101 Tomsk State University, Tomsk, Russia
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...