Recombinant Histones as an Instrument for the Delivery of Nucleic Acids into Eukaryotic Cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

M. V. Zinovyeva, A. V. Sass, A. V. Vvedensky, V. K. Potapov, L. G. Nikolaev, E. D. Sverdlov

ABSTRACT

Naturally occurring positively charged proteins can be promising carriers for nucleic acid transport in gene therapy. The most attractive alternative among them is histones. In this work, we describe expression and purification of recombinant human histones H2A and H2B and of chimeric histone H2A with HIV-1 TAT fragment (TAT-peptide). The proposed method of purification of histone proteins can significantly reduce the content of bacterial endotoxins in the target preparation, which makes it possible to use these proteins in in vivo experiments. The transfection ability of plasmid DNA complexes with core histones H2A and H2B and the chimeric histone was demonstrated. A highly specific and efficient transfection of human HT1080 cell line with the use of histones H2A and H2B was detected, whereas transfection by plasmid DNA complexes with chimeric H2A-TAT protein was observed for many cell lines. More... »

PAGES

187-194

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0891416818030072

DOI

http://dx.doi.org/10.3103/s0891416818030072

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111996978


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Bioorganic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418853.3", 
          "name": [
            "Shemyakin\u2013Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zinovyeva", 
        "givenName": "M. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioorganic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418853.3", 
          "name": [
            "Shemyakin\u2013Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sass", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioorganic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418853.3", 
          "name": [
            "Shemyakin\u2013Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vvedensky", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioorganic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418853.3", 
          "name": [
            "Shemyakin\u2013Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potapov", 
        "givenName": "V. K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioorganic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418853.3", 
          "name": [
            "Shemyakin\u2013Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "L. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Molecular Genetics", 
          "id": "https://www.grid.ac/institutes/grid.418826.1", 
          "name": [
            "Shemyakin\u2013Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia", 
            "Institute of Molecular Genetics of the Russian Academy of Sciences, 123182, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sverdlov", 
        "givenName": "E. D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijpharm.2013.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000193377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0104029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006312099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2277-9175.98152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007975950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009324955", 
          "https://doi.org/10.1038/nprot.2007.202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bip.20989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010272666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2003.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012377526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2003.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012377526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(89)70061-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014252833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpharm.2010.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015502839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coviro.2016.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018377861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0006297916070063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019723671", 
          "https://doi.org/10.1134/s0006297916070063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0006297916070063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019723671", 
          "https://doi.org/10.1134/s0006297916070063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.mt.6300093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020349508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1248/bpb.18.1793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026358035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.210382997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028297347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addr.2016.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037588067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2003.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038813033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2003.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038813033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2006.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040053591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0091-679x(08)60100-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041959365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addr.2007.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044713408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2015.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048011085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar4000554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048680694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b916297f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049947114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/mt.2010.233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050299299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/039463200401700105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052674539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/039463200401700105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052674539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.00757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053321469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp200372s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056212679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14712598.2017.1248941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058394748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1381612822666160204120643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069170836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1566523214666140612152730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069184794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7860/jcdr/2015/10443.5394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074081095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080339064", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03401715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083187198", 
          "https://doi.org/10.1007/bf03401715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41061-017-0112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083736236", 
          "https://doi.org/10.1007/s41061-017-0112-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41061-017-0112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083736236", 
          "https://doi.org/10.1007/s41061-017-0112-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2017.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085158162"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "Naturally occurring positively charged proteins can be promising carriers for nucleic acid transport in gene therapy. The most attractive alternative among them is histones. In this work, we describe expression and purification of recombinant human histones H2A and H2B and of chimeric histone H2A with HIV-1 TAT fragment (TAT-peptide). The proposed method of purification of histone proteins can significantly reduce the content of bacterial endotoxins in the target preparation, which makes it possible to use these proteins in in vivo experiments. The transfection ability of plasmid DNA complexes with core histones H2A and H2B and the chimeric histone was demonstrated. A highly specific and efficient transfection of human HT1080 cell line with the use of histones H2A and H2B was detected, whereas transfection by plasmid DNA complexes with chimeric H2A-TAT protein was observed for many cell lines.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0891416818030072", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1097703", 
        "issn": [
          "0891-4168", 
          "1934-841X"
        ], 
        "name": "Molecular Genetics, Microbiology and Virology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Recombinant Histones as an Instrument for the Delivery of Nucleic Acids into Eukaryotic Cells", 
    "pagination": "187-194", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "290efb3566b84d5243edef635bf2c0f3f4701d925ba925ece25992fbfa1406d9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0891416818030072"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111996978"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0891416818030072", 
      "https://app.dimensions.ai/details/publication/pub.1111996978"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000332_0000000332/records_121939_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS0891416818030072"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0891416818030072'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0891416818030072'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0891416818030072'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0891416818030072'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0891416818030072 schema:about anzsrc-for:10
2 anzsrc-for:1004
3 schema:author Nb8c1a97cfeb6473f80b1016b16ac0514
4 schema:citation sg:pub.10.1007/bf03401715
5 sg:pub.10.1007/s41061-017-0112-0
6 sg:pub.10.1038/nprot.2007.202
7 sg:pub.10.1134/s0006297916070063
8 https://app.dimensions.ai/details/publication/pub.1080339064
9 https://doi.org/10.1002/bip.20989
10 https://doi.org/10.1016/0076-6879(89)70061-6
11 https://doi.org/10.1016/j.actbio.2015.04.025
12 https://doi.org/10.1016/j.addr.2007.10.008
13 https://doi.org/10.1016/j.addr.2016.06.002
14 https://doi.org/10.1016/j.coviro.2016.08.001
15 https://doi.org/10.1016/j.ijpharm.2010.08.036
16 https://doi.org/10.1016/j.ijpharm.2013.11.041
17 https://doi.org/10.1016/j.jbiotec.2003.07.006
18 https://doi.org/10.1016/j.jbiotec.2017.05.002
19 https://doi.org/10.1016/j.jconrel.2006.04.013
20 https://doi.org/10.1016/j.ymeth.2003.10.024
21 https://doi.org/10.1016/s0091-679x(08)60100-4
22 https://doi.org/10.1021/ar4000554
23 https://doi.org/10.1021/mp200372s
24 https://doi.org/10.1038/mt.2010.233
25 https://doi.org/10.1038/sj.mt.6300093
26 https://doi.org/10.1039/b916297f
27 https://doi.org/10.1073/pnas.210382997
28 https://doi.org/10.1080/14712598.2017.1248941
29 https://doi.org/10.1177/039463200401700105
30 https://doi.org/10.1242/jcs.00757
31 https://doi.org/10.1248/bpb.18.1793
32 https://doi.org/10.1371/journal.pone.0104029
33 https://doi.org/10.2174/1381612822666160204120643
34 https://doi.org/10.2174/1566523214666140612152730
35 https://doi.org/10.4103/2277-9175.98152
36 https://doi.org/10.7860/jcdr/2015/10443.5394
37 schema:datePublished 2018-07
38 schema:datePublishedReg 2018-07-01
39 schema:description Naturally occurring positively charged proteins can be promising carriers for nucleic acid transport in gene therapy. The most attractive alternative among them is histones. In this work, we describe expression and purification of recombinant human histones H2A and H2B and of chimeric histone H2A with HIV-1 TAT fragment (TAT-peptide). The proposed method of purification of histone proteins can significantly reduce the content of bacterial endotoxins in the target preparation, which makes it possible to use these proteins in in vivo experiments. The transfection ability of plasmid DNA complexes with core histones H2A and H2B and the chimeric histone was demonstrated. A highly specific and efficient transfection of human HT1080 cell line with the use of histones H2A and H2B was detected, whereas transfection by plasmid DNA complexes with chimeric H2A-TAT protein was observed for many cell lines.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N561615d2edc24e3e89ed42b139dfebfe
44 N936c0073415343b5a532236633399d7e
45 sg:journal.1097703
46 schema:name Recombinant Histones as an Instrument for the Delivery of Nucleic Acids into Eukaryotic Cells
47 schema:pagination 187-194
48 schema:productId N409a6bc459f14aaba5f54054650f9faf
49 Naf00e82270994f50a4f03b71f1f86ec7
50 Nbd27fae0e3594974a6629804c2e8ae95
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111996978
52 https://doi.org/10.3103/s0891416818030072
53 schema:sdDatePublished 2019-04-11T09:03
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N61715c9ae5d54b90863005e7a83cabba
56 schema:url https://link.springer.com/10.3103%2FS0891416818030072
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0af7aa540a8549bf8acc6f4af74d0321 schema:affiliation https://www.grid.ac/institutes/grid.418853.3
61 schema:familyName Nikolaev
62 schema:givenName L. G.
63 rdf:type schema:Person
64 N0c2dc032a9b94e6083ea1e5d3d173979 schema:affiliation https://www.grid.ac/institutes/grid.418853.3
65 schema:familyName Vvedensky
66 schema:givenName A. V.
67 rdf:type schema:Person
68 N0eb63b62414d42f196b07674e141c422 rdf:first N168310e63ff34f69abdc70b052aa45e9
69 rdf:rest N52eddaba06ab41e48c37c5445588b253
70 N168310e63ff34f69abdc70b052aa45e9 schema:affiliation https://www.grid.ac/institutes/grid.418853.3
71 schema:familyName Sass
72 schema:givenName A. V.
73 rdf:type schema:Person
74 N21745997808f4bdd8f110c0d2c3c02ee schema:affiliation https://www.grid.ac/institutes/grid.418853.3
75 schema:familyName Zinovyeva
76 schema:givenName M. V.
77 rdf:type schema:Person
78 N409a6bc459f14aaba5f54054650f9faf schema:name dimensions_id
79 schema:value pub.1111996978
80 rdf:type schema:PropertyValue
81 N52eddaba06ab41e48c37c5445588b253 rdf:first N0c2dc032a9b94e6083ea1e5d3d173979
82 rdf:rest Nc68c6a4a2dc846448bc7090ff77f2da3
83 N561615d2edc24e3e89ed42b139dfebfe schema:volumeNumber 33
84 rdf:type schema:PublicationVolume
85 N61715c9ae5d54b90863005e7a83cabba schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N936c0073415343b5a532236633399d7e schema:issueNumber 3
88 rdf:type schema:PublicationIssue
89 N9798a9c6d6e64e5698fae205ea7f510a rdf:first N0af7aa540a8549bf8acc6f4af74d0321
90 rdf:rest Nef8b0518bbfa41aebe41373e3bdac08a
91 Naf00e82270994f50a4f03b71f1f86ec7 schema:name readcube_id
92 schema:value 290efb3566b84d5243edef635bf2c0f3f4701d925ba925ece25992fbfa1406d9
93 rdf:type schema:PropertyValue
94 Nb8c1a97cfeb6473f80b1016b16ac0514 rdf:first N21745997808f4bdd8f110c0d2c3c02ee
95 rdf:rest N0eb63b62414d42f196b07674e141c422
96 Nbd27fae0e3594974a6629804c2e8ae95 schema:name doi
97 schema:value 10.3103/s0891416818030072
98 rdf:type schema:PropertyValue
99 Nbe501018ddca474a9e9c04d229d4b519 schema:affiliation https://www.grid.ac/institutes/grid.418853.3
100 schema:familyName Potapov
101 schema:givenName V. K.
102 rdf:type schema:Person
103 Nc68c6a4a2dc846448bc7090ff77f2da3 rdf:first Nbe501018ddca474a9e9c04d229d4b519
104 rdf:rest N9798a9c6d6e64e5698fae205ea7f510a
105 Needa684977a449f7af809ded5ffd7f72 schema:affiliation https://www.grid.ac/institutes/grid.418826.1
106 schema:familyName Sverdlov
107 schema:givenName E. D.
108 rdf:type schema:Person
109 Nef8b0518bbfa41aebe41373e3bdac08a rdf:first Needa684977a449f7af809ded5ffd7f72
110 rdf:rest rdf:nil
111 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
112 schema:name Technology
113 rdf:type schema:DefinedTerm
114 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
115 schema:name Medical Biotechnology
116 rdf:type schema:DefinedTerm
117 sg:journal.1097703 schema:issn 0891-4168
118 1934-841X
119 schema:name Molecular Genetics, Microbiology and Virology
120 rdf:type schema:Periodical
121 sg:pub.10.1007/bf03401715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083187198
122 https://doi.org/10.1007/bf03401715
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s41061-017-0112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083736236
125 https://doi.org/10.1007/s41061-017-0112-0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nprot.2007.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009324955
128 https://doi.org/10.1038/nprot.2007.202
129 rdf:type schema:CreativeWork
130 sg:pub.10.1134/s0006297916070063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019723671
131 https://doi.org/10.1134/s0006297916070063
132 rdf:type schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1080339064 schema:CreativeWork
134 https://doi.org/10.1002/bip.20989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010272666
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0076-6879(89)70061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014252833
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.actbio.2015.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048011085
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.addr.2007.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044713408
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.addr.2016.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037588067
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.coviro.2016.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018377861
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ijpharm.2010.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015502839
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ijpharm.2013.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000193377
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jbiotec.2003.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012377526
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jbiotec.2017.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085158162
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jconrel.2006.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040053591
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ymeth.2003.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038813033
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0091-679x(08)60100-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041959365
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ar4000554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048680694
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/mp200372s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056212679
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1038/mt.2010.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050299299
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1038/sj.mt.6300093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020349508
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1039/b916297f schema:sameAs https://app.dimensions.ai/details/publication/pub.1049947114
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.210382997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028297347
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1080/14712598.2017.1248941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058394748
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1177/039463200401700105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052674539
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1242/jcs.00757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053321469
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1248/bpb.18.1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026358035
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1371/journal.pone.0104029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006312099
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2174/1381612822666160204120643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069170836
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2174/1566523214666140612152730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069184794
185 rdf:type schema:CreativeWork
186 https://doi.org/10.4103/2277-9175.98152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007975950
187 rdf:type schema:CreativeWork
188 https://doi.org/10.7860/jcdr/2015/10443.5394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074081095
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.418826.1 schema:alternateName Institute of Molecular Genetics
191 schema:name Institute of Molecular Genetics of the Russian Academy of Sciences, 123182, Moscow, Russia
192 Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.418853.3 schema:alternateName Institute of Bioorganic Chemistry
195 schema:name Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...