Modeling the State of a Railway Track Foundation by Seismic Methods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

N. K. Kapustian, G. N. Antonovskaya, I. M. Basakina, A. V. Danilov

ABSTRACT

The paper presents the first results of full-scale modeling of the state of the foundation of a railway track running through areas with complex natural-climatic and engineering-geological conditions. Our results demonstrate the fundamental possibility of using seismic stations installed along the track foundation to continuously monitor its state. Monitoring parameters that can signal subsoil deterioration have been identified, e.g., flooding, ground thawing, etc. An advantage of the proposed approach over other geophysical methods is the possibility of identifying problem areas at the early stage, as well as real-time monitoring of their state and rapid information transmission to a central communication hub. More... »

PAGES

682-690

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s074792391806004x

DOI

http://dx.doi.org/10.3103/s074792391806004x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111840022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, Russia", 
            "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapustian", 
        "givenName": "N. K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antonovskaya", 
        "givenName": "G. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basakina", 
        "givenName": "I. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilov", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2208/journalofjsce.1.1_322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008070610"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The paper presents the first results of full-scale modeling of the state of the foundation of a railway track running through areas with complex natural-climatic and engineering-geological conditions. Our results demonstrate the fundamental possibility of using seismic stations installed along the track foundation to continuously monitor its state. Monitoring parameters that can signal subsoil deterioration have been identified, e.g., flooding, ground thawing, etc. An advantage of the proposed approach over other geophysical methods is the possibility of identifying problem areas at the early stage, as well as real-time monitoring of their state and rapid information transmission to a central communication hub.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s074792391806004x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7056080", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136303", 
        "issn": [
          "0747-9239", 
          "1934-7871"
        ], 
        "name": "Seismic Instruments", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Modeling the State of a Railway Track Foundation by Seismic Methods", 
    "pagination": "682-690", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c149b29b45f70a09fc9247bbfbe09a4dd4870d87da78ca97343f195e863764b9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s074792391806004x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111840022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s074792391806004x", 
      "https://app.dimensions.ai/details/publication/pub.1111840022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114961_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS074792391806004X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s074792391806004x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s074792391806004x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s074792391806004x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s074792391806004x'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s074792391806004x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf0ad067ed98644c7aa19b89045a8fa90
4 schema:citation https://doi.org/10.2208/journalofjsce.1.1_322
5 schema:datePublished 2018-12
6 schema:datePublishedReg 2018-12-01
7 schema:description The paper presents the first results of full-scale modeling of the state of the foundation of a railway track running through areas with complex natural-climatic and engineering-geological conditions. Our results demonstrate the fundamental possibility of using seismic stations installed along the track foundation to continuously monitor its state. Monitoring parameters that can signal subsoil deterioration have been identified, e.g., flooding, ground thawing, etc. An advantage of the proposed approach over other geophysical methods is the possibility of identifying problem areas at the early stage, as well as real-time monitoring of their state and rapid information transmission to a central communication hub.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N61b213afe76b47d38b316ceae20066fe
12 Nbb41a9ab25904f34860ee8affffea240
13 sg:journal.1136303
14 schema:name Modeling the State of a Railway Track Foundation by Seismic Methods
15 schema:pagination 682-690
16 schema:productId N9a6e07a22b5047a59bf0c598d1d19c96
17 Na058b4579f5c4983a56b6a3d03fd97f0
18 Ne83dd9810e93469e9e5a0a1d51aa94e3
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111840022
20 https://doi.org/10.3103/s074792391806004x
21 schema:sdDatePublished 2019-04-11T08:59
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N767fba19dd0a4a41b5fd330059821e4a
24 schema:url https://link.springer.com/10.3103%2FS074792391806004X
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N41e130dff6694180b5439f01a71c12bf schema:affiliation https://www.grid.ac/institutes/grid.4886.2
29 schema:familyName Kapustian
30 schema:givenName N. K.
31 rdf:type schema:Person
32 N5233294c60f44345b3d04dbec9f759e2 schema:name Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, Russia
33 rdf:type schema:Organization
34 N5b34a6328e79461c8d00feb37ba9f9ab rdf:first Nc9c20329bd0d42a2a90742f801f9ac2e
35 rdf:rest rdf:nil
36 N61b213afe76b47d38b316ceae20066fe schema:issueNumber 6
37 rdf:type schema:PublicationIssue
38 N767fba19dd0a4a41b5fd330059821e4a schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N9621ba3fadeb4c65aa0656f00591151b schema:name Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, Russia
41 rdf:type schema:Organization
42 N9a6e07a22b5047a59bf0c598d1d19c96 schema:name doi
43 schema:value 10.3103/s074792391806004x
44 rdf:type schema:PropertyValue
45 Na058b4579f5c4983a56b6a3d03fd97f0 schema:name readcube_id
46 schema:value c149b29b45f70a09fc9247bbfbe09a4dd4870d87da78ca97343f195e863764b9
47 rdf:type schema:PropertyValue
48 Naed9c8f81fe644e19f1a0c1d798ed85f rdf:first Nb383f28e8fc14c4f8b5b012708a91f36
49 rdf:rest N5b34a6328e79461c8d00feb37ba9f9ab
50 Nb383f28e8fc14c4f8b5b012708a91f36 schema:affiliation Ne2c84ae0047845bdb1360524c3d01529
51 schema:familyName Basakina
52 schema:givenName I. M.
53 rdf:type schema:Person
54 Nbb41a9ab25904f34860ee8affffea240 schema:volumeNumber 54
55 rdf:type schema:PublicationVolume
56 Nc9c20329bd0d42a2a90742f801f9ac2e schema:affiliation N5233294c60f44345b3d04dbec9f759e2
57 schema:familyName Danilov
58 schema:givenName A. V.
59 rdf:type schema:Person
60 Ne0f0a8d7c8524bb78b9e831461a49e58 rdf:first Ne94d6483c015422bb577e8735251b9ef
61 rdf:rest Naed9c8f81fe644e19f1a0c1d798ed85f
62 Ne2c84ae0047845bdb1360524c3d01529 schema:name Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, Russia
63 rdf:type schema:Organization
64 Ne83dd9810e93469e9e5a0a1d51aa94e3 schema:name dimensions_id
65 schema:value pub.1111840022
66 rdf:type schema:PropertyValue
67 Ne94d6483c015422bb577e8735251b9ef schema:affiliation N9621ba3fadeb4c65aa0656f00591151b
68 schema:familyName Antonovskaya
69 schema:givenName G. N.
70 rdf:type schema:Person
71 Nf0ad067ed98644c7aa19b89045a8fa90 rdf:first N41e130dff6694180b5439f01a71c12bf
72 rdf:rest Ne0f0a8d7c8524bb78b9e831461a49e58
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
77 schema:name Artificial Intelligence and Image Processing
78 rdf:type schema:DefinedTerm
79 sg:grant.7056080 http://pending.schema.org/fundedItem sg:pub.10.3103/s074792391806004x
80 rdf:type schema:MonetaryGrant
81 sg:journal.1136303 schema:issn 0747-9239
82 1934-7871
83 schema:name Seismic Instruments
84 rdf:type schema:Periodical
85 https://doi.org/10.2208/journalofjsce.1.1_322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008070610
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
88 schema:name Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, Russia
89 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...