Project TWINSAT: Development of Integrated Aerospace and Ground-Based Early Warning and Monitoring Technologies for Precursors to Large-Scale Natural Disasters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

E. A. Rogozhin, V. M. Chmyrev, O. A. Pokhotelov, B. F. Nesterov

ABSTRACT

The paper substantiates and briefly describes an innovative project aimed at creating and using in practice effective space-, aviation, and ground-based early warning and monitoring technologies for precursors to large-scale earthquakes in order to increase the accuracy and reliability in the short-term forecasting of times and places of disasters. The innovative scheme, which envisages the use of paired satellite equipment with controlled distance and information exchange between them, will make it possible to obtain data on the spatial structure and dynamic characteristics of studied phenomena, substantially increasing the reliability in detecting earthquake-related signals from a set of other natural phenomena. A distinctive feature of the project is a three-tiered system and multiparameter analysis of a wide set of precursor signals simultaneously revealed by different methods in different media, which significantly increases the accuracy and reliability in short-term earthquake forecasts. We present a stage-by-stage practical implementation scheme and a business model that will guarantee a swift return on investments and the economic viability of the project as a whole. More... »

PAGES

521-530

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0747923918050122

DOI

http://dx.doi.org/10.3103/s0747923918050122

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110083617


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogozhin", 
        "givenName": "E. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia", 
            "JSC GEOSCAN Technologies, Skolkovo Innovation Center, 143026, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chmyrev", 
        "givenName": "V. M.", 
        "id": "sg:person.014266253567.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266253567.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pokhotelov", 
        "givenName": "O. A.", 
        "id": "sg:person.010507474451.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507474451.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "JSC GEOSCAN Technologies, Skolkovo Innovation Center, 143026, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nesterov", 
        "givenName": "B. F.", 
        "id": "sg:person.010537720020.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537720020.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.asr.2013.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004751264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs2010124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008421168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jastp.2010.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013308836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6826(96)00110-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021518424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6826(01)00047-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035097901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1069351316040078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038690553", 
          "https://doi.org/10.1134/s1069351316040078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1069351316040078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038690553", 
          "https://doi.org/10.1134/s1069351316040078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jastp.2011.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050428103"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "The paper substantiates and briefly describes an innovative project aimed at creating and using in practice effective space-, aviation, and ground-based early warning and monitoring technologies for precursors to large-scale earthquakes in order to increase the accuracy and reliability in the short-term forecasting of times and places of disasters. The innovative scheme, which envisages the use of paired satellite equipment with controlled distance and information exchange between them, will make it possible to obtain data on the spatial structure and dynamic characteristics of studied phenomena, substantially increasing the reliability in detecting earthquake-related signals from a set of other natural phenomena. A distinctive feature of the project is a three-tiered system and multiparameter analysis of a wide set of precursor signals simultaneously revealed by different methods in different media, which significantly increases the accuracy and reliability in short-term earthquake forecasts. We present a stage-by-stage practical implementation scheme and a business model that will guarantee a swift return on investments and the economic viability of the project as a whole.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0747923918050122", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136303", 
        "issn": [
          "0747-9239", 
          "1934-7871"
        ], 
        "name": "Seismic Instruments", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Project TWINSAT: Development of Integrated Aerospace and Ground-Based Early Warning and Monitoring Technologies for Precursors to Large-Scale Natural Disasters", 
    "pagination": "521-530", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "964a3937ab90ac0d4c730614759c2712b602834e6666f1d2e237f2f5c9cd76fe"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0747923918050122"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110083617"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0747923918050122", 
      "https://app.dimensions.ai/details/publication/pub.1110083617"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000269_0000000269/records_56802_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS0747923918050122"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0747923918050122'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0747923918050122'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0747923918050122'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0747923918050122'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0747923918050122 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc22478a3e78a4c7389a5f4bc212c9e6e
4 schema:citation sg:pub.10.1134/s1069351316040078
5 https://doi.org/10.1016/j.asr.2013.06.017
6 https://doi.org/10.1016/j.jastp.2010.03.021
7 https://doi.org/10.1016/j.jastp.2011.01.016
8 https://doi.org/10.1016/s1364-6826(01)00047-5
9 https://doi.org/10.1016/s1364-6826(96)00110-1
10 https://doi.org/10.3390/rs2010124
11 schema:datePublished 2018-09
12 schema:datePublishedReg 2018-09-01
13 schema:description The paper substantiates and briefly describes an innovative project aimed at creating and using in practice effective space-, aviation, and ground-based early warning and monitoring technologies for precursors to large-scale earthquakes in order to increase the accuracy and reliability in the short-term forecasting of times and places of disasters. The innovative scheme, which envisages the use of paired satellite equipment with controlled distance and information exchange between them, will make it possible to obtain data on the spatial structure and dynamic characteristics of studied phenomena, substantially increasing the reliability in detecting earthquake-related signals from a set of other natural phenomena. A distinctive feature of the project is a three-tiered system and multiparameter analysis of a wide set of precursor signals simultaneously revealed by different methods in different media, which significantly increases the accuracy and reliability in short-term earthquake forecasts. We present a stage-by-stage practical implementation scheme and a business model that will guarantee a swift return on investments and the economic viability of the project as a whole.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N2c3f0e2734254c398ee0b1ff7181307d
18 N86b950ea3eda48e4a042587af89317f7
19 sg:journal.1136303
20 schema:name Project TWINSAT: Development of Integrated Aerospace and Ground-Based Early Warning and Monitoring Technologies for Precursors to Large-Scale Natural Disasters
21 schema:pagination 521-530
22 schema:productId Ndc2dc5142e1d407eb59cd0399b7ba32d
23 Ne355cada5fb645cd92e8612d3da6eac7
24 Ne8a4d93af97d46069972e976d606c870
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110083617
26 https://doi.org/10.3103/s0747923918050122
27 schema:sdDatePublished 2019-04-11T08:11
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N49b89f8ee06f4847a5dd1206511f43d7
30 schema:url https://link.springer.com/10.3103%2FS0747923918050122
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N2c3f0e2734254c398ee0b1ff7181307d schema:issueNumber 5
35 rdf:type schema:PublicationIssue
36 N49b89f8ee06f4847a5dd1206511f43d7 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N548ced415c6740648c77994765d7a3df rdf:first sg:person.010507474451.93
39 rdf:rest Nc76226ce40db4e3880d44b4a4f77c8b5
40 N5ef54b5b0d07406091e6753eb9e154b9 rdf:first sg:person.014266253567.56
41 rdf:rest N548ced415c6740648c77994765d7a3df
42 N5f15df5be4cf4cb8ba447475c98757e3 schema:name JSC GEOSCAN Technologies, Skolkovo Innovation Center, 143026, Moscow, Russia
43 rdf:type schema:Organization
44 N86b950ea3eda48e4a042587af89317f7 schema:volumeNumber 54
45 rdf:type schema:PublicationVolume
46 Nb5f6f2f6fc3045cba3baf8fe27044598 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
47 schema:familyName Rogozhin
48 schema:givenName E. A.
49 rdf:type schema:Person
50 Nc22478a3e78a4c7389a5f4bc212c9e6e rdf:first Nb5f6f2f6fc3045cba3baf8fe27044598
51 rdf:rest N5ef54b5b0d07406091e6753eb9e154b9
52 Nc76226ce40db4e3880d44b4a4f77c8b5 rdf:first sg:person.010537720020.30
53 rdf:rest rdf:nil
54 Ndc2dc5142e1d407eb59cd0399b7ba32d schema:name readcube_id
55 schema:value 964a3937ab90ac0d4c730614759c2712b602834e6666f1d2e237f2f5c9cd76fe
56 rdf:type schema:PropertyValue
57 Ne355cada5fb645cd92e8612d3da6eac7 schema:name doi
58 schema:value 10.3103/s0747923918050122
59 rdf:type schema:PropertyValue
60 Ne8a4d93af97d46069972e976d606c870 schema:name dimensions_id
61 schema:value pub.1110083617
62 rdf:type schema:PropertyValue
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
67 schema:name Artificial Intelligence and Image Processing
68 rdf:type schema:DefinedTerm
69 sg:journal.1136303 schema:issn 0747-9239
70 1934-7871
71 schema:name Seismic Instruments
72 rdf:type schema:Periodical
73 sg:person.010507474451.93 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
74 schema:familyName Pokhotelov
75 schema:givenName O. A.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507474451.93
77 rdf:type schema:Person
78 sg:person.010537720020.30 schema:affiliation N5f15df5be4cf4cb8ba447475c98757e3
79 schema:familyName Nesterov
80 schema:givenName B. F.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537720020.30
82 rdf:type schema:Person
83 sg:person.014266253567.56 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
84 schema:familyName Chmyrev
85 schema:givenName V. M.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266253567.56
87 rdf:type schema:Person
88 sg:pub.10.1134/s1069351316040078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038690553
89 https://doi.org/10.1134/s1069351316040078
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.asr.2013.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004751264
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.jastp.2010.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013308836
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jastp.2011.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050428103
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s1364-6826(01)00047-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035097901
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s1364-6826(96)00110-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021518424
100 rdf:type schema:CreativeWork
101 https://doi.org/10.3390/rs2010124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008421168
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
104 schema:name JSC GEOSCAN Technologies, Skolkovo Innovation Center, 143026, Moscow, Russia
105 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...