Simulation of the Physical Characteristics of Dispersed Phase Particles Using the Results of Dynamic Light Scattering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05

AUTHORS

Kh. M. Kadiev, A. M. Gyul’maliev, M. Kh. Kadieva

ABSTRACT

A procedure for the construction of an approximating particle-size distribution function of a dispersed phase using a dynamic light scattering method was proposed. This procedure makes it possible to pass from the experimental spectrum in the particle size–intensity coordinates to theoretical particle size–number of particles and particle size–weight of particles spectra and obtain additional data on the nature of the particle size distribution. The algorithm of the calculation method was presented and illustrated by particular examples. More... »

PAGES

187-193

References to SciGraph publications

  • 2000-03. Characterization of Nanoparticles by Scattering Techniques in JOURNAL OF NANOPARTICLE RESEARCH
  • 2008. Soft Matter Characterization in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s0361521921030071

    DOI

    http://dx.doi.org/10.3103/s0361521921030071

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139163909


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kadiev", 
            "givenName": "Kh. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gyul\u2019maliev", 
            "givenName": "A. M.", 
            "id": "sg:person.014421456061.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421456061.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kadieva", 
            "givenName": "M. Kh.", 
            "id": "sg:person.010431675375.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1010001822699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012952928", 
              "https://doi.org/10.1023/a:1010001822699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-4465-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015540321", 
              "https://doi.org/10.1007/978-1-4020-4465-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05", 
        "datePublishedReg": "2021-05-01", 
        "description": "A procedure for the construction of an approximating particle-size distribution function of a dispersed phase using a dynamic light scattering method was proposed. This procedure makes it possible to pass from the experimental spectrum in the particle size\u2013intensity coordinates to theoretical particle size\u2013number of particles and particle size\u2013weight of particles spectra and obtain additional data on the nature of the particle size distribution. The algorithm of the calculation method was presented and illustrated by particular examples.", 
        "genre": "article", 
        "id": "sg:pub.10.3103/s0361521921030071", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136585", 
            "issn": [
              "0361-5219", 
              "1934-8029"
            ], 
            "name": "Solid Fuel Chemistry", 
            "publisher": "Allerton Press", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "particle spectra", 
          "light scattering method", 
          "experimental spectra", 
          "dynamic light scattering method", 
          "theoretical particles", 
          "scattering method", 
          "dynamic light scattering", 
          "light scattering", 
          "distribution function", 
          "particle size distribution function", 
          "particles", 
          "spectra", 
          "scattering", 
          "particular example", 
          "dispersed phase particles", 
          "particle size distribution", 
          "size distribution", 
          "coordinates", 
          "simulations", 
          "physical characteristics", 
          "calculation method", 
          "phase", 
          "distribution", 
          "phase particles", 
          "method", 
          "nature", 
          "function", 
          "additional data", 
          "results", 
          "example", 
          "characteristics", 
          "data", 
          "construction", 
          "procedure", 
          "algorithm", 
          "particle size\u2013intensity coordinates", 
          "size\u2013intensity coordinates"
        ], 
        "name": "Simulation of the Physical Characteristics of Dispersed Phase Particles Using the Results of Dynamic Light Scattering", 
        "pagination": "187-193", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139163909"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s0361521921030071"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s0361521921030071", 
          "https://app.dimensions.ai/details/publication/pub.1139163909"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.3103/s0361521921030071"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0361521921030071'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0361521921030071'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0361521921030071'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0361521921030071'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      22 PREDICATES      65 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s0361521921030071 schema:about anzsrc-for:03
    2 anzsrc-for:09
    3 schema:author N1038d8c83f80494b9a120e32cf2b9dc8
    4 schema:citation sg:pub.10.1007/978-1-4020-4465-6
    5 sg:pub.10.1023/a:1010001822699
    6 schema:datePublished 2021-05
    7 schema:datePublishedReg 2021-05-01
    8 schema:description A procedure for the construction of an approximating particle-size distribution function of a dispersed phase using a dynamic light scattering method was proposed. This procedure makes it possible to pass from the experimental spectrum in the particle size–intensity coordinates to theoretical particle size–number of particles and particle size–weight of particles spectra and obtain additional data on the nature of the particle size distribution. The algorithm of the calculation method was presented and illustrated by particular examples.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N52620574dad54055b667fa2ac1a8e7bf
    13 N53820c006b2147f0b530aeb62772e8f5
    14 sg:journal.1136585
    15 schema:keywords additional data
    16 algorithm
    17 calculation method
    18 characteristics
    19 construction
    20 coordinates
    21 data
    22 dispersed phase particles
    23 distribution
    24 distribution function
    25 dynamic light scattering
    26 dynamic light scattering method
    27 example
    28 experimental spectra
    29 function
    30 light scattering
    31 light scattering method
    32 method
    33 nature
    34 particle size distribution
    35 particle size distribution function
    36 particle size–intensity coordinates
    37 particle spectra
    38 particles
    39 particular example
    40 phase
    41 phase particles
    42 physical characteristics
    43 procedure
    44 results
    45 scattering
    46 scattering method
    47 simulations
    48 size distribution
    49 size–intensity coordinates
    50 spectra
    51 theoretical particles
    52 schema:name Simulation of the Physical Characteristics of Dispersed Phase Particles Using the Results of Dynamic Light Scattering
    53 schema:pagination 187-193
    54 schema:productId Na76b3100cc7e4b928edbf82f3c77b233
    55 Nd1721a642c6b4590930d1730f38d6fcc
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139163909
    57 https://doi.org/10.3103/s0361521921030071
    58 schema:sdDatePublished 2022-01-01T18:59
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N1dc2c46b95474637bc35dbe41446c00a
    61 schema:url https://doi.org/10.3103/s0361521921030071
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N1038d8c83f80494b9a120e32cf2b9dc8 rdf:first Nac61904d307f4207a342810b2c567813
    66 rdf:rest Nde8f303c36154743b55926e336738d13
    67 N1dc2c46b95474637bc35dbe41446c00a schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N52620574dad54055b667fa2ac1a8e7bf schema:volumeNumber 55
    70 rdf:type schema:PublicationVolume
    71 N53820c006b2147f0b530aeb62772e8f5 schema:issueNumber 3
    72 rdf:type schema:PublicationIssue
    73 N6f4cab289fdc4561adf855a65465f842 rdf:first sg:person.010431675375.32
    74 rdf:rest rdf:nil
    75 Na76b3100cc7e4b928edbf82f3c77b233 schema:name dimensions_id
    76 schema:value pub.1139163909
    77 rdf:type schema:PropertyValue
    78 Nac61904d307f4207a342810b2c567813 schema:affiliation grid-institutes:grid.423490.8
    79 schema:familyName Kadiev
    80 schema:givenName Kh. M.
    81 rdf:type schema:Person
    82 Nd1721a642c6b4590930d1730f38d6fcc schema:name doi
    83 schema:value 10.3103/s0361521921030071
    84 rdf:type schema:PropertyValue
    85 Nde8f303c36154743b55926e336738d13 rdf:first sg:person.014421456061.65
    86 rdf:rest N6f4cab289fdc4561adf855a65465f842
    87 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Chemical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Engineering
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1136585 schema:issn 0361-5219
    94 1934-8029
    95 schema:name Solid Fuel Chemistry
    96 schema:publisher Allerton Press
    97 rdf:type schema:Periodical
    98 sg:person.010431675375.32 schema:affiliation grid-institutes:grid.423490.8
    99 schema:familyName Kadieva
    100 schema:givenName M. Kh.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32
    102 rdf:type schema:Person
    103 sg:person.014421456061.65 schema:affiliation grid-institutes:grid.423490.8
    104 schema:familyName Gyul’maliev
    105 schema:givenName A. M.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421456061.65
    107 rdf:type schema:Person
    108 sg:pub.10.1007/978-1-4020-4465-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015540321
    109 https://doi.org/10.1007/978-1-4020-4465-6
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1023/a:1010001822699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012952928
    112 https://doi.org/10.1023/a:1010001822699
    113 rdf:type schema:CreativeWork
    114 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
    115 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...