Hydrofining of Oil Shale Pyrolysis Tar in the Presence of Ultradispersed Catalysts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-28

AUTHORS

Kh. M. Kadiev, A. M. Gyul’maliev, L. A. Zekel’, M. Kh. Kadieva

ABSTRACT

The results of the catalytic hydroconversion of oil shale pyrolysis tar in the presence of in situ and ex situ synthesized ultradispersed and nanosized MoS2 particles in a flow reactor at a hydrogen pressure of 7MPa, a temperature of 430–450°C, a feed space velocity of 1–2.9 h–1, and an H2/feed flow ratio of 1000 L(NTP)/L with and without recycling the unconverted residue are reported. The optimum conditions of hydroconversion under which the yield of distillate fractions was 91.9 wt % on a raw material basis are proposed. It is shown that the quality of the refined synthetic oil makes it possible to use it in traditional petrochemical processes. More... »

PAGES

336-342

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0361521918050051

DOI

http://dx.doi.org/10.3103/s0361521918050051

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107295863


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadiev", 
        "givenName": "Kh. M.", 
        "id": "sg:person.012531050145.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gyul\u2019maliev", 
        "givenName": "A. M.", 
        "id": "sg:person.014421456061.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421456061.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zekel\u2019", 
        "givenName": "L. A.", 
        "id": "sg:person.012733636407.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadieva", 
        "givenName": "M. Kh.", 
        "id": "sg:person.010431675375.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965544113050034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035585435", 
          "https://doi.org/10.1134/s0965544113050034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544117070039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090596103", 
          "https://doi.org/10.1134/s0965544117070039"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-28", 
    "datePublishedReg": "2018-09-28", 
    "description": "The results of the catalytic hydroconversion of oil shale pyrolysis tar in the presence of in situ and ex situ synthesized ultradispersed and nanosized MoS2 particles in a flow reactor at a hydrogen pressure of 7MPa, a temperature of 430\u2013450\u00b0C, a feed space velocity of 1\u20132.9 h\u20131, and an H2/feed flow ratio of 1000 L(NTP)/L with and without recycling the unconverted residue are reported. The optimum conditions of hydroconversion under which the yield of distillate fractions was 91.9 wt % on a raw material basis are proposed. It is shown that the quality of the refined synthetic oil makes it possible to use it in traditional petrochemical processes.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s0361521918050051", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136585", 
        "issn": [
          "0361-5219", 
          "1934-8029"
        ], 
        "name": "Solid Fuel Chemistry", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "ultradispersed catalysts", 
      "feed space velocity", 
      "traditional petrochemical processes", 
      "pyrolysis tar", 
      "synthetic oil", 
      "flow ratio", 
      "unconverted residue", 
      "flow reactor", 
      "optimum conditions", 
      "petrochemical processes", 
      "raw material basis", 
      "space velocity", 
      "hydrogen pressure", 
      "ex situ", 
      "tar", 
      "distillate fractions", 
      "reactor", 
      "catalytic hydroconversion", 
      "MoS2", 
      "velocity", 
      "situ", 
      "temperature", 
      "hydroconversion", 
      "oil", 
      "pressure", 
      "process", 
      "material basis", 
      "conditions", 
      "ratio", 
      "catalyst", 
      "fraction", 
      "results", 
      "quality", 
      "h-1", 
      "presence", 
      "yield", 
      "basis", 
      "residues", 
      "oil shale pyrolysis tar", 
      "shale pyrolysis tar", 
      "H2/feed flow ratio", 
      "feed flow ratio", 
      "refined synthetic oil"
    ], 
    "name": "Hydrofining of Oil Shale Pyrolysis Tar in the Presence of Ultradispersed Catalysts", 
    "pagination": "336-342", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107295863"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0361521918050051"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0361521918050051", 
      "https://app.dimensions.ai/details/publication/pub.1107295863"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_755.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s0361521918050051"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0361521918050051'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0361521918050051'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0361521918050051'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0361521918050051'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      70 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0361521918050051 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author Nddde8e7a7c2f446db45c0f60939246cd
4 schema:citation sg:pub.10.1134/s0965544113050034
5 sg:pub.10.1134/s0965544117070039
6 schema:datePublished 2018-09-28
7 schema:datePublishedReg 2018-09-28
8 schema:description The results of the catalytic hydroconversion of oil shale pyrolysis tar in the presence of in situ and ex situ synthesized ultradispersed and nanosized MoS2 particles in a flow reactor at a hydrogen pressure of 7MPa, a temperature of 430–450°C, a feed space velocity of 1–2.9 h–1, and an H2/feed flow ratio of 1000 L(NTP)/L with and without recycling the unconverted residue are reported. The optimum conditions of hydroconversion under which the yield of distillate fractions was 91.9 wt % on a raw material basis are proposed. It is shown that the quality of the refined synthetic oil makes it possible to use it in traditional petrochemical processes.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N566f465159d94b5084b495fe298f10a9
13 N6e6d2b17d5564c18a6ff8d24f11826c9
14 sg:journal.1136585
15 schema:keywords H2/feed flow ratio
16 MoS2
17 basis
18 catalyst
19 catalytic hydroconversion
20 conditions
21 distillate fractions
22 ex situ
23 feed flow ratio
24 feed space velocity
25 flow ratio
26 flow reactor
27 fraction
28 h-1
29 hydroconversion
30 hydrogen pressure
31 material basis
32 oil
33 oil shale pyrolysis tar
34 optimum conditions
35 petrochemical processes
36 presence
37 pressure
38 process
39 pyrolysis tar
40 quality
41 ratio
42 raw material basis
43 reactor
44 refined synthetic oil
45 residues
46 results
47 shale pyrolysis tar
48 situ
49 space velocity
50 synthetic oil
51 tar
52 temperature
53 traditional petrochemical processes
54 ultradispersed catalysts
55 unconverted residue
56 velocity
57 yield
58 schema:name Hydrofining of Oil Shale Pyrolysis Tar in the Presence of Ultradispersed Catalysts
59 schema:pagination 336-342
60 schema:productId N2829cdf7b8aa422683c811b31ceb97b2
61 N8dc4b717d6534fa4970a34da5f82b124
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107295863
63 https://doi.org/10.3103/s0361521918050051
64 schema:sdDatePublished 2022-01-01T18:48
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nd46262c2042f4787bbc405d71ee35344
67 schema:url https://doi.org/10.3103/s0361521918050051
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N2829cdf7b8aa422683c811b31ceb97b2 schema:name dimensions_id
72 schema:value pub.1107295863
73 rdf:type schema:PropertyValue
74 N5296e3d6460e4955893bae679bb58695 rdf:first sg:person.014421456061.65
75 rdf:rest N55d6a0c8d8814d23b168fce6112add53
76 N55d6a0c8d8814d23b168fce6112add53 rdf:first sg:person.012733636407.55
77 rdf:rest N5ce7bf566a1c459788b97ce9b1699347
78 N566f465159d94b5084b495fe298f10a9 schema:volumeNumber 52
79 rdf:type schema:PublicationVolume
80 N5ce7bf566a1c459788b97ce9b1699347 rdf:first sg:person.010431675375.32
81 rdf:rest rdf:nil
82 N6e6d2b17d5564c18a6ff8d24f11826c9 schema:issueNumber 5
83 rdf:type schema:PublicationIssue
84 N8dc4b717d6534fa4970a34da5f82b124 schema:name doi
85 schema:value 10.3103/s0361521918050051
86 rdf:type schema:PropertyValue
87 Nd46262c2042f4787bbc405d71ee35344 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nddde8e7a7c2f446db45c0f60939246cd rdf:first sg:person.012531050145.44
90 rdf:rest N5296e3d6460e4955893bae679bb58695
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
95 schema:name Environmental Engineering
96 rdf:type schema:DefinedTerm
97 sg:journal.1136585 schema:issn 0361-5219
98 1934-8029
99 schema:name Solid Fuel Chemistry
100 schema:publisher Allerton Press
101 rdf:type schema:Periodical
102 sg:person.010431675375.32 schema:affiliation grid-institutes:grid.423490.8
103 schema:familyName Kadieva
104 schema:givenName M. Kh.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431675375.32
106 rdf:type schema:Person
107 sg:person.012531050145.44 schema:affiliation grid-institutes:grid.423490.8
108 schema:familyName Kadiev
109 schema:givenName Kh. M.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012531050145.44
111 rdf:type schema:Person
112 sg:person.012733636407.55 schema:affiliation grid-institutes:grid.423490.8
113 schema:familyName Zekel’
114 schema:givenName L. A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733636407.55
116 rdf:type schema:Person
117 sg:person.014421456061.65 schema:affiliation grid-institutes:grid.423490.8
118 schema:familyName Gyul’maliev
119 schema:givenName A. M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421456061.65
121 rdf:type schema:Person
122 sg:pub.10.1134/s0965544113050034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035585435
123 https://doi.org/10.1134/s0965544113050034
124 rdf:type schema:CreativeWork
125 sg:pub.10.1134/s0965544117070039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090596103
126 https://doi.org/10.1134/s0965544117070039
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
129 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...