Simulation of the strength of metallurgical coke View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04-15

AUTHORS

A. M. Gyul’maliev, I. A. Sultanguzin, V. V. Bologova

ABSTRACT

An algorithm is given for the optimization of the strength characteristics of metallurgical coke with the variation of charge mixture composition. Various versions of the computer simulation of the strength of coke are analyzed with the use of a particular example.

PAGES

90-92

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0361521912020061

DOI

http://dx.doi.org/10.3103/s0361521912020061

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047708415


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gyul\u2019maliev", 
        "givenName": "A. M.", 
        "id": "sg:person.014421456061.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421456061.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Power Engineering Institute (Technical University), 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "Moscow Power Engineering Institute (Technical University), 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sultanguzin", 
        "givenName": "I. A.", 
        "id": "sg:person.015575302625.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015575302625.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Power Engineering Institute (Technical University), 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "Moscow Power Engineering Institute (Technical University), 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bologova", 
        "givenName": "V. V.", 
        "id": "sg:person.07406720322.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07406720322.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-04-15", 
    "datePublishedReg": "2012-04-15", 
    "description": "An algorithm is given for the optimization of the strength characteristics of metallurgical coke with the variation of charge mixture composition. Various versions of the computer simulation of the strength of coke are analyzed with the use of a particular example.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s0361521912020061", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136585", 
        "issn": [
          "0361-5219", 
          "1934-8029"
        ], 
        "name": "Solid Fuel Chemistry", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "metallurgical coke", 
      "strength of coke", 
      "strength characteristics", 
      "coke", 
      "mixture composition", 
      "computer simulations", 
      "simulations", 
      "strength", 
      "optimization", 
      "particular example", 
      "characteristics", 
      "algorithm", 
      "composition", 
      "variation", 
      "example", 
      "use", 
      "version"
    ], 
    "name": "Simulation of the strength of metallurgical coke", 
    "pagination": "90-92", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047708415"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0361521912020061"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0361521912020061", 
      "https://app.dimensions.ai/details/publication/pub.1047708415"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_559.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s0361521912020061"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0361521912020061'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0361521912020061'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0361521912020061'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0361521912020061'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      20 PREDICATES      41 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0361521912020061 schema:about anzsrc-for:03
2 anzsrc-for:09
3 schema:author N24ea0fc4b22646e28dafb663ecedafc5
4 schema:datePublished 2012-04-15
5 schema:datePublishedReg 2012-04-15
6 schema:description An algorithm is given for the optimization of the strength characteristics of metallurgical coke with the variation of charge mixture composition. Various versions of the computer simulation of the strength of coke are analyzed with the use of a particular example.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N07daca1223924181b17f38cd32e3a32e
10 N229f9a31c1474fcf9610a4224e45909a
11 sg:journal.1136585
12 schema:keywords algorithm
13 characteristics
14 coke
15 composition
16 computer simulations
17 example
18 metallurgical coke
19 mixture composition
20 optimization
21 particular example
22 simulations
23 strength
24 strength characteristics
25 strength of coke
26 use
27 variation
28 version
29 schema:name Simulation of the strength of metallurgical coke
30 schema:pagination 90-92
31 schema:productId N23b99fe4db0c417d8ab786a238f8dd2f
32 Nd9876320c86641aaa9a8dadceb414b9e
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047708415
34 https://doi.org/10.3103/s0361521912020061
35 schema:sdDatePublished 2022-11-24T20:56
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nfd4cbbb1a2054c248c45eaf60f7cb482
38 schema:url https://doi.org/10.3103/s0361521912020061
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N07daca1223924181b17f38cd32e3a32e schema:volumeNumber 46
43 rdf:type schema:PublicationVolume
44 N229f9a31c1474fcf9610a4224e45909a schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 N23b99fe4db0c417d8ab786a238f8dd2f schema:name dimensions_id
47 schema:value pub.1047708415
48 rdf:type schema:PropertyValue
49 N24ea0fc4b22646e28dafb663ecedafc5 rdf:first sg:person.014421456061.65
50 rdf:rest Nc75d4fcd0ade4bf5956167e2e7393add
51 Na15dc9650cab4b42b019f719757b1e4f rdf:first sg:person.07406720322.06
52 rdf:rest rdf:nil
53 Nc75d4fcd0ade4bf5956167e2e7393add rdf:first sg:person.015575302625.94
54 rdf:rest Na15dc9650cab4b42b019f719757b1e4f
55 Nd9876320c86641aaa9a8dadceb414b9e schema:name doi
56 schema:value 10.3103/s0361521912020061
57 rdf:type schema:PropertyValue
58 Nfd4cbbb1a2054c248c45eaf60f7cb482 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
61 schema:name Chemical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 sg:journal.1136585 schema:issn 0361-5219
67 1934-8029
68 schema:name Solid Fuel Chemistry
69 schema:publisher Allerton Press
70 rdf:type schema:Periodical
71 sg:person.014421456061.65 schema:affiliation grid-institutes:grid.423490.8
72 schema:familyName Gyul’maliev
73 schema:givenName A. M.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421456061.65
75 rdf:type schema:Person
76 sg:person.015575302625.94 schema:affiliation grid-institutes:grid.77852.3f
77 schema:familyName Sultanguzin
78 schema:givenName I. A.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015575302625.94
80 rdf:type schema:Person
81 sg:person.07406720322.06 schema:affiliation grid-institutes:grid.77852.3f
82 schema:familyName Bologova
83 schema:givenName V. V.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07406720322.06
85 rdf:type schema:Person
86 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
87 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
88 rdf:type schema:Organization
89 grid-institutes:grid.77852.3f schema:alternateName Moscow Power Engineering Institute (Technical University), 111250, Moscow, Russia
90 schema:name Moscow Power Engineering Institute (Technical University), 111250, Moscow, Russia
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...