Ontology type: schema:ScholarlyArticle
2021-01
AUTHORST. A. Trifonova, N. V. Mishchenko, P. S. Shutov, E. P. Bykova
ABSTRACTThis article is devoted to the assessment of the effect of biotic, abiotic, and anthropogenic factors on the dynamics of production processes of various ecosystems located in the same natural and climatic subzone: the southern taiga of the Eastern European Plain. The study was performed on four test plots in Vladimir oblast located in various landscape provinces with similar climatic conditions, but differed in some features of the soil and plant cover, anthropogenic load, and land-use pattern. The calculation of productivity parameters in carbon units was based on MODIS GPP/NPP data. Organic carbon reserves in soil were determined according to the Food and Agriculture Organization (FAO) of the United Nations based on plugin Trends.Earth of QGIS. The dynamics of parameters of vegetation productivity from year to year on the background of its absolute values is common for the four ecosystems. Conditions for carbon accumulation in soil are favorable in areas with high productivity and a large number of overgrown lands. The results of the ANOVA analysis of variance show that the factors of time and spatial position of test plots do not affect the content of organic carbon in soil, or the gross biological productivity. The land-use pattern is a significant factor. It is shown that insufficient productivity of some ecosystems is compensated by an increased productivity of neighboring ones; therefore, the preservation of intralandscape diversity is a necessary condition for maintaining the stability of their functioning. More... »
PAGES11-18
http://scigraph.springernature.com/pub.10.3103/s0147687421010063
DOIhttp://dx.doi.org/10.3103/s0147687421010063
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1137739991
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Science and Management",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Soil Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Ecology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Soil Science, Moscow State University, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Department of Soil Science, Moscow State University, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Trifonova",
"givenName": "T. A.",
"id": "sg:person.013240511031.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240511031.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vladimir State University, Vladimir, Russia",
"id": "http://www.grid.ac/institutes/grid.171855.f",
"name": [
"Vladimir State University, Vladimir, Russia"
],
"type": "Organization"
},
"familyName": "Mishchenko",
"givenName": "N. V.",
"id": "sg:person.013573156021.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573156021.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vladimir State University, Vladimir, Russia",
"id": "http://www.grid.ac/institutes/grid.171855.f",
"name": [
"Vladimir State University, Vladimir, Russia"
],
"type": "Organization"
},
"familyName": "Shutov",
"givenName": "P. S.",
"id": "sg:person.011276741713.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276741713.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Soil Science, Moscow State University, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Department of Soil Science, Moscow State University, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Bykova",
"givenName": "E. P.",
"id": "sg:person.014532366415.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014532366415.39"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1064229320020131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1125905665",
"https://doi.org/10.1134/s1064229320020131"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1875372816030021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018300270",
"https://doi.org/10.1134/s1875372816030021"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10661-019-7989-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1123223611",
"https://doi.org/10.1007/s10661-019-7989-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-01",
"datePublishedReg": "2021-01-01",
"description": "This article is devoted to the assessment of the effect of biotic, abiotic, and anthropogenic factors on the dynamics of production processes of various ecosystems located in the same natural and climatic subzone: the southern taiga of the Eastern European Plain. The study was performed on four test plots in Vladimir oblast located in various landscape provinces with similar climatic conditions, but differed in some features of the soil and plant cover, anthropogenic load, and land-use pattern. The calculation of productivity parameters in carbon units was based on MODIS GPP/NPP data. Organic carbon reserves in soil were determined according to the Food and Agriculture Organization (FAO) of the United Nations based on plugin Trends.Earth of QGIS. The dynamics of parameters of vegetation productivity from year to year on the background of its absolute values is common for the four ecosystems. Conditions for carbon accumulation in soil are favorable in areas with high productivity and a large number of overgrown lands. The results of the ANOVA analysis of variance show that the factors of time and spatial position of test plots do not affect the content of organic carbon in soil, or the gross biological productivity. The land-use pattern is a significant factor. It is shown that insufficient productivity of some ecosystems is compensated by an increased productivity of neighboring ones; therefore, the preservation of intralandscape diversity is a necessary condition for maintaining the stability of their functioning.",
"genre": "article",
"id": "sg:pub.10.3103/s0147687421010063",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136559",
"issn": [
"0147-6874",
"1934-7928"
],
"name": "Moscow University Soil Science Bulletin",
"publisher": "Allerton Press",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "76"
}
],
"keywords": [
"land use patterns",
"Eastern European Plain",
"test plots",
"organic carbon reserves",
"European Plain",
"south taiga subzone",
"remote sensing data",
"similar climatic conditions",
"plant cover",
"landscape provinces",
"vegetation productivity",
"carbon accumulation",
"southern taiga",
"taiga subzone",
"anthropogenic factors",
"anthropogenic load",
"organic carbon",
"NPP data",
"carbon reserves",
"Vladimir Oblast",
"soil",
"biological productivity",
"ecosystems",
"sensing data",
"climatic conditions",
"insufficient productivity",
"Agriculture Organization",
"productivity parameters",
"productivity",
"high productivity",
"Plain",
"plots",
"dynamics of parameters",
"subzones",
"taiga",
"cover",
"abiotic",
"land",
"dynamics",
"landscape",
"diversity",
"reserves",
"carbon",
"Oblast",
"United Nations",
"carbon units",
"patterns",
"ANOVA analysis",
"area",
"Province",
"spatial position",
"functioning",
"significant factor",
"assessment",
"accumulation",
"conditions",
"factors",
"preservation",
"years",
"trends",
"content",
"food",
"large number",
"data",
"variance",
"process",
"factor of time",
"production process",
"values",
"effect",
"nations",
"parameters",
"study",
"estimation",
"results",
"units",
"absolute value",
"load",
"number",
"analysis",
"time",
"organization",
"one",
"stability",
"background",
"position",
"features",
"article",
"necessary condition",
"calculations"
],
"name": "Estimation of the Dynamics of Production Processes in Landscapes of the South Taiga Subzone of the Eastern European Plain by Remote Sensing Data",
"pagination": "11-18",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1137739991"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.3103/s0147687421010063"
]
}
],
"sameAs": [
"https://doi.org/10.3103/s0147687421010063",
"https://app.dimensions.ai/details/publication/pub.1137739991"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_878.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.3103/s0147687421010063"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0147687421010063'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0147687421010063'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0147687421010063'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0147687421010063'
This table displays all metadata directly associated to this object as RDF triples.
196 TRIPLES
22 PREDICATES
121 URIs
107 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.3103/s0147687421010063 | schema:about | anzsrc-for:05 |
2 | ″ | ″ | anzsrc-for:0502 |
3 | ″ | ″ | anzsrc-for:0503 |
4 | ″ | ″ | anzsrc-for:06 |
5 | ″ | ″ | anzsrc-for:0602 |
6 | ″ | schema:author | N728acfb404c942a095800131457488dc |
7 | ″ | schema:citation | sg:pub.10.1007/s10661-019-7989-8 |
8 | ″ | ″ | sg:pub.10.1134/s1064229320020131 |
9 | ″ | ″ | sg:pub.10.1134/s1875372816030021 |
10 | ″ | schema:datePublished | 2021-01 |
11 | ″ | schema:datePublishedReg | 2021-01-01 |
12 | ″ | schema:description | This article is devoted to the assessment of the effect of biotic, abiotic, and anthropogenic factors on the dynamics of production processes of various ecosystems located in the same natural and climatic subzone: the southern taiga of the Eastern European Plain. The study was performed on four test plots in Vladimir oblast located in various landscape provinces with similar climatic conditions, but differed in some features of the soil and plant cover, anthropogenic load, and land-use pattern. The calculation of productivity parameters in carbon units was based on MODIS GPP/NPP data. Organic carbon reserves in soil were determined according to the Food and Agriculture Organization (FAO) of the United Nations based on plugin Trends.Earth of QGIS. The dynamics of parameters of vegetation productivity from year to year on the background of its absolute values is common for the four ecosystems. Conditions for carbon accumulation in soil are favorable in areas with high productivity and a large number of overgrown lands. The results of the ANOVA analysis of variance show that the factors of time and spatial position of test plots do not affect the content of organic carbon in soil, or the gross biological productivity. The land-use pattern is a significant factor. It is shown that insufficient productivity of some ecosystems is compensated by an increased productivity of neighboring ones; therefore, the preservation of intralandscape diversity is a necessary condition for maintaining the stability of their functioning. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | Ne82ee45538724f418a376218cea20bad |
17 | ″ | ″ | Nfaa6ae92b2d94ff2b2ed6fd1817bf066 |
18 | ″ | ″ | sg:journal.1136559 |
19 | ″ | schema:keywords | ANOVA analysis |
20 | ″ | ″ | Agriculture Organization |
21 | ″ | ″ | Eastern European Plain |
22 | ″ | ″ | European Plain |
23 | ″ | ″ | NPP data |
24 | ″ | ″ | Oblast |
25 | ″ | ″ | Plain |
26 | ″ | ″ | Province |
27 | ″ | ″ | United Nations |
28 | ″ | ″ | Vladimir Oblast |
29 | ″ | ″ | abiotic |
30 | ″ | ″ | absolute value |
31 | ″ | ″ | accumulation |
32 | ″ | ″ | analysis |
33 | ″ | ″ | anthropogenic factors |
34 | ″ | ″ | anthropogenic load |
35 | ″ | ″ | area |
36 | ″ | ″ | article |
37 | ″ | ″ | assessment |
38 | ″ | ″ | background |
39 | ″ | ″ | biological productivity |
40 | ″ | ″ | calculations |
41 | ″ | ″ | carbon |
42 | ″ | ″ | carbon accumulation |
43 | ″ | ″ | carbon reserves |
44 | ″ | ″ | carbon units |
45 | ″ | ″ | climatic conditions |
46 | ″ | ″ | conditions |
47 | ″ | ″ | content |
48 | ″ | ″ | cover |
49 | ″ | ″ | data |
50 | ″ | ″ | diversity |
51 | ″ | ″ | dynamics |
52 | ″ | ″ | dynamics of parameters |
53 | ″ | ″ | ecosystems |
54 | ″ | ″ | effect |
55 | ″ | ″ | estimation |
56 | ″ | ″ | factor of time |
57 | ″ | ″ | factors |
58 | ″ | ″ | features |
59 | ″ | ″ | food |
60 | ″ | ″ | functioning |
61 | ″ | ″ | high productivity |
62 | ″ | ″ | insufficient productivity |
63 | ″ | ″ | land |
64 | ″ | ″ | land use patterns |
65 | ″ | ″ | landscape |
66 | ″ | ″ | landscape provinces |
67 | ″ | ″ | large number |
68 | ″ | ″ | load |
69 | ″ | ″ | nations |
70 | ″ | ″ | necessary condition |
71 | ″ | ″ | number |
72 | ″ | ″ | one |
73 | ″ | ″ | organic carbon |
74 | ″ | ″ | organic carbon reserves |
75 | ″ | ″ | organization |
76 | ″ | ″ | parameters |
77 | ″ | ″ | patterns |
78 | ″ | ″ | plant cover |
79 | ″ | ″ | plots |
80 | ″ | ″ | position |
81 | ″ | ″ | preservation |
82 | ″ | ″ | process |
83 | ″ | ″ | production process |
84 | ″ | ″ | productivity |
85 | ″ | ″ | productivity parameters |
86 | ″ | ″ | remote sensing data |
87 | ″ | ″ | reserves |
88 | ″ | ″ | results |
89 | ″ | ″ | sensing data |
90 | ″ | ″ | significant factor |
91 | ″ | ″ | similar climatic conditions |
92 | ″ | ″ | soil |
93 | ″ | ″ | south taiga subzone |
94 | ″ | ″ | southern taiga |
95 | ″ | ″ | spatial position |
96 | ″ | ″ | stability |
97 | ″ | ″ | study |
98 | ″ | ″ | subzones |
99 | ″ | ″ | taiga |
100 | ″ | ″ | taiga subzone |
101 | ″ | ″ | test plots |
102 | ″ | ″ | time |
103 | ″ | ″ | trends |
104 | ″ | ″ | units |
105 | ″ | ″ | values |
106 | ″ | ″ | variance |
107 | ″ | ″ | vegetation productivity |
108 | ″ | ″ | years |
109 | ″ | schema:name | Estimation of the Dynamics of Production Processes in Landscapes of the South Taiga Subzone of the Eastern European Plain by Remote Sensing Data |
110 | ″ | schema:pagination | 11-18 |
111 | ″ | schema:productId | N51d30a4b56d44b38ba0a5c6ba0e23a2c |
112 | ″ | ″ | Na28f51b2770d41bf86ddb43121ae9c70 |
113 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1137739991 |
114 | ″ | ″ | https://doi.org/10.3103/s0147687421010063 |
115 | ″ | schema:sdDatePublished | 2022-05-20T07:37 |
116 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
117 | ″ | schema:sdPublisher | Nbd360ad8c7844b2ab592e8d559d9f9a4 |
118 | ″ | schema:url | https://doi.org/10.3103/s0147687421010063 |
119 | ″ | sgo:license | sg:explorer/license/ |
120 | ″ | sgo:sdDataset | articles |
121 | ″ | rdf:type | schema:ScholarlyArticle |
122 | N387ee241f06a40b4993024daeaba0569 | rdf:first | sg:person.014532366415.39 |
123 | ″ | rdf:rest | rdf:nil |
124 | N4b4db91cce90422993cc604ba9922254 | rdf:first | sg:person.013573156021.11 |
125 | ″ | rdf:rest | N8835201c3f4740969b8eb6d9b927da90 |
126 | N51d30a4b56d44b38ba0a5c6ba0e23a2c | schema:name | doi |
127 | ″ | schema:value | 10.3103/s0147687421010063 |
128 | ″ | rdf:type | schema:PropertyValue |
129 | N728acfb404c942a095800131457488dc | rdf:first | sg:person.013240511031.90 |
130 | ″ | rdf:rest | N4b4db91cce90422993cc604ba9922254 |
131 | N8835201c3f4740969b8eb6d9b927da90 | rdf:first | sg:person.011276741713.22 |
132 | ″ | rdf:rest | N387ee241f06a40b4993024daeaba0569 |
133 | Na28f51b2770d41bf86ddb43121ae9c70 | schema:name | dimensions_id |
134 | ″ | schema:value | pub.1137739991 |
135 | ″ | rdf:type | schema:PropertyValue |
136 | Nbd360ad8c7844b2ab592e8d559d9f9a4 | schema:name | Springer Nature - SN SciGraph project |
137 | ″ | rdf:type | schema:Organization |
138 | Ne82ee45538724f418a376218cea20bad | schema:issueNumber | 1 |
139 | ″ | rdf:type | schema:PublicationIssue |
140 | Nfaa6ae92b2d94ff2b2ed6fd1817bf066 | schema:volumeNumber | 76 |
141 | ″ | rdf:type | schema:PublicationVolume |
142 | anzsrc-for:05 | schema:inDefinedTermSet | anzsrc-for: |
143 | ″ | schema:name | Environmental Sciences |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | anzsrc-for:0502 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Environmental Science and Management |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | anzsrc-for:0503 | schema:inDefinedTermSet | anzsrc-for: |
149 | ″ | schema:name | Soil Sciences |
150 | ″ | rdf:type | schema:DefinedTerm |
151 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
152 | ″ | schema:name | Biological Sciences |
153 | ″ | rdf:type | schema:DefinedTerm |
154 | anzsrc-for:0602 | schema:inDefinedTermSet | anzsrc-for: |
155 | ″ | schema:name | Ecology |
156 | ″ | rdf:type | schema:DefinedTerm |
157 | sg:journal.1136559 | schema:issn | 0147-6874 |
158 | ″ | ″ | 1934-7928 |
159 | ″ | schema:name | Moscow University Soil Science Bulletin |
160 | ″ | schema:publisher | Allerton Press |
161 | ″ | rdf:type | schema:Periodical |
162 | sg:person.011276741713.22 | schema:affiliation | grid-institutes:grid.171855.f |
163 | ″ | schema:familyName | Shutov |
164 | ″ | schema:givenName | P. S. |
165 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276741713.22 |
166 | ″ | rdf:type | schema:Person |
167 | sg:person.013240511031.90 | schema:affiliation | grid-institutes:grid.14476.30 |
168 | ″ | schema:familyName | Trifonova |
169 | ″ | schema:givenName | T. A. |
170 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240511031.90 |
171 | ″ | rdf:type | schema:Person |
172 | sg:person.013573156021.11 | schema:affiliation | grid-institutes:grid.171855.f |
173 | ″ | schema:familyName | Mishchenko |
174 | ″ | schema:givenName | N. V. |
175 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573156021.11 |
176 | ″ | rdf:type | schema:Person |
177 | sg:person.014532366415.39 | schema:affiliation | grid-institutes:grid.14476.30 |
178 | ″ | schema:familyName | Bykova |
179 | ″ | schema:givenName | E. P. |
180 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014532366415.39 |
181 | ″ | rdf:type | schema:Person |
182 | sg:pub.10.1007/s10661-019-7989-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1123223611 |
183 | ″ | ″ | https://doi.org/10.1007/s10661-019-7989-8 |
184 | ″ | rdf:type | schema:CreativeWork |
185 | sg:pub.10.1134/s1064229320020131 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1125905665 |
186 | ″ | ″ | https://doi.org/10.1134/s1064229320020131 |
187 | ″ | rdf:type | schema:CreativeWork |
188 | sg:pub.10.1134/s1875372816030021 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018300270 |
189 | ″ | ″ | https://doi.org/10.1134/s1875372816030021 |
190 | ″ | rdf:type | schema:CreativeWork |
191 | grid-institutes:grid.14476.30 | schema:alternateName | Department of Soil Science, Moscow State University, Moscow, Russia |
192 | ″ | schema:name | Department of Soil Science, Moscow State University, Moscow, Russia |
193 | ″ | rdf:type | schema:Organization |
194 | grid-institutes:grid.171855.f | schema:alternateName | Vladimir State University, Vladimir, Russia |
195 | ″ | schema:name | Vladimir State University, Vladimir, Russia |
196 | ″ | rdf:type | schema:Organization |