Asymptotical Distributions of Eigenvalues of Periodic and Antiperiodic Boundary Value Problems for Second-Order Differential Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

S. A. Kashchenko

ABSTRACT

—We consider asymptotical distributions of characteristic constants in periodic and antiperiodic boundary value problems for a second-order linear equation with periodic coefficients. This allows one to obtain asymptotical properties of stability and instability zones of solutions. We show that if there are no turning points, i.e., if , then the lengths of instability zones converge to zero as their number increases, while the lengths of stability zones converge to a positive number. If and function has zeroes, then the lengths of stability and instability zones have finite nonzero limits as the numbers of the corresponding zones infinitely increase. If function is alternating, then the lengths of all stability zones converge to zero and the lengths of all instability zones converge to finite numbers. This yields various stability and instability criteria for solutions of second-order equations with periodic coefficients. The presented results are illustrated by a substantial example. The investigation methods are based on a detailed study of so-called special standard equations and the reduction of original equations to standard equations. Here, asymptotical methods of the theory of singular perturbations and properties of series of special functions are used. More... »

PAGES

797-809

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0146411618070143

DOI

http://dx.doi.org/10.3103/s0146411618070143

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112534954


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Demidov Yaroslavl State University, 150003, Yaroslavl, Russia", 
            "National Research Nuclear University Moscow Engineering Physics Institute (MEPhI), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kashchenko", 
        "givenName": "S. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-3303-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028128485", 
          "https://doi.org/10.1007/978-1-4684-3303-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0146411616070105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054012523", 
          "https://doi.org/10.3103/s0146411616070105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0146411616070105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054012523", 
          "https://doi.org/10.3103/s0146411616070105"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Abstract\u2014We consider asymptotical distributions of characteristic constants in periodic and antiperiodic boundary value problems for a second-order linear equation with periodic coefficients. This allows one to obtain asymptotical properties of stability and instability zones of solutions. We show that if there are no turning points, i.e., if , then the lengths of instability zones converge to zero as their number increases, while the lengths of stability zones converge to a positive number. If and function has zeroes, then the lengths of stability and instability zones have finite nonzero limits as the numbers of the corresponding zones infinitely increase. If function is alternating, then the lengths of all stability zones converge to zero and the lengths of all instability zones converge to finite numbers. This yields various stability and instability criteria for solutions of second-order equations with periodic coefficients. The presented results are illustrated by a substantial example. The investigation methods are based on a detailed study of so-called special standard equations and the reduction of original equations to standard equations. Here, asymptotical methods of the theory of singular perturbations and properties of series of special functions are used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0146411618070143", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136763", 
        "issn": [
          "0146-4116", 
          "1558-108X"
        ], 
        "name": "Automatic Control and Computer Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Asymptotical Distributions of Eigenvalues of Periodic and Antiperiodic Boundary Value Problems for Second-Order Differential Equations", 
    "pagination": "797-809", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "01dde83c4dadea60fa43058ca95f93938450d97687229d3b0e7acbd76d4deb05"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0146411618070143"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112534954"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0146411618070143", 
      "https://app.dimensions.ai/details/publication/pub.1112534954"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60338_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS0146411618070143"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070143'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070143'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070143'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070143'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0146411618070143 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc10f3e959f7c4b83a163d435428c284d
4 schema:citation sg:pub.10.1007/978-1-4684-3303-6_1
5 sg:pub.10.3103/s0146411616070105
6 schema:datePublished 2018-12
7 schema:datePublishedReg 2018-12-01
8 schema:description Abstract—We consider asymptotical distributions of characteristic constants in periodic and antiperiodic boundary value problems for a second-order linear equation with periodic coefficients. This allows one to obtain asymptotical properties of stability and instability zones of solutions. We show that if there are no turning points, i.e., if , then the lengths of instability zones converge to zero as their number increases, while the lengths of stability zones converge to a positive number. If and function has zeroes, then the lengths of stability and instability zones have finite nonzero limits as the numbers of the corresponding zones infinitely increase. If function is alternating, then the lengths of all stability zones converge to zero and the lengths of all instability zones converge to finite numbers. This yields various stability and instability criteria for solutions of second-order equations with periodic coefficients. The presented results are illustrated by a substantial example. The investigation methods are based on a detailed study of so-called special standard equations and the reduction of original equations to standard equations. Here, asymptotical methods of the theory of singular perturbations and properties of series of special functions are used.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N442923a696dd423dbd7686d8cbae303e
13 N536dfe0dc3d54bfca1d02e17a68e3af0
14 sg:journal.1136763
15 schema:name Asymptotical Distributions of Eigenvalues of Periodic and Antiperiodic Boundary Value Problems for Second-Order Differential Equations
16 schema:pagination 797-809
17 schema:productId N13f9361176c94be29b9d4b4bba02bca1
18 N3cab0ba0b4b2441a87b37b90eaaee430
19 N70c00d28ccc94ef389043f236a4c51b8
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112534954
21 https://doi.org/10.3103/s0146411618070143
22 schema:sdDatePublished 2019-04-11T11:00
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N8cd62762ddd44d1abc9a0935efc939ec
25 schema:url https://link.springer.com/10.3103%2FS0146411618070143
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N13f9361176c94be29b9d4b4bba02bca1 schema:name doi
30 schema:value 10.3103/s0146411618070143
31 rdf:type schema:PropertyValue
32 N3cab0ba0b4b2441a87b37b90eaaee430 schema:name readcube_id
33 schema:value 01dde83c4dadea60fa43058ca95f93938450d97687229d3b0e7acbd76d4deb05
34 rdf:type schema:PropertyValue
35 N442923a696dd423dbd7686d8cbae303e schema:volumeNumber 52
36 rdf:type schema:PublicationVolume
37 N536dfe0dc3d54bfca1d02e17a68e3af0 schema:issueNumber 7
38 rdf:type schema:PublicationIssue
39 N70c00d28ccc94ef389043f236a4c51b8 schema:name dimensions_id
40 schema:value pub.1112534954
41 rdf:type schema:PropertyValue
42 N8cd62762ddd44d1abc9a0935efc939ec schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nc10f3e959f7c4b83a163d435428c284d rdf:first Nf9b0a627000a40bd885602be9c88ea67
45 rdf:rest rdf:nil
46 Nf9b0a627000a40bd885602be9c88ea67 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
47 schema:familyName Kashchenko
48 schema:givenName S. A.
49 rdf:type schema:Person
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136763 schema:issn 0146-4116
57 1558-108X
58 schema:name Automatic Control and Computer Sciences
59 rdf:type schema:Periodical
60 sg:pub.10.1007/978-1-4684-3303-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128485
61 https://doi.org/10.1007/978-1-4684-3303-6_1
62 rdf:type schema:CreativeWork
63 sg:pub.10.3103/s0146411616070105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054012523
64 https://doi.org/10.3103/s0146411616070105
65 rdf:type schema:CreativeWork
66 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
67 schema:name Demidov Yaroslavl State University, 150003, Yaroslavl, Russia
68 National Research Nuclear University Moscow Engineering Physics Institute (MEPhI), 115409, Moscow, Russia
69 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...