Asymptotical Distributions of Eigenvalues of Periodic and Antiperiodic Boundary Value Problems for Second-Order Differential Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

S. A. Kashchenko

ABSTRACT

—We consider asymptotical distributions of characteristic constants in periodic and antiperiodic boundary value problems for a second-order linear equation with periodic coefficients. This allows one to obtain asymptotical properties of stability and instability zones of solutions. We show that if there are no turning points, i.e., if , then the lengths of instability zones converge to zero as their number increases, while the lengths of stability zones converge to a positive number. If and function has zeroes, then the lengths of stability and instability zones have finite nonzero limits as the numbers of the corresponding zones infinitely increase. If function is alternating, then the lengths of all stability zones converge to zero and the lengths of all instability zones converge to finite numbers. This yields various stability and instability criteria for solutions of second-order equations with periodic coefficients. The presented results are illustrated by a substantial example. The investigation methods are based on a detailed study of so-called special standard equations and the reduction of original equations to standard equations. Here, asymptotical methods of the theory of singular perturbations and properties of series of special functions are used. More... »

PAGES

797-809

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0146411618070143

DOI

http://dx.doi.org/10.3103/s0146411618070143

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112534954


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Demidov Yaroslavl State University, 150003, Yaroslavl, Russia", 
            "National Research Nuclear University Moscow Engineering Physics Institute (MEPhI), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kashchenko", 
        "givenName": "S. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-3303-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028128485", 
          "https://doi.org/10.1007/978-1-4684-3303-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0146411616070105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054012523", 
          "https://doi.org/10.3103/s0146411616070105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0146411616070105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054012523", 
          "https://doi.org/10.3103/s0146411616070105"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Abstract\u2014We consider asymptotical distributions of characteristic constants in periodic and antiperiodic boundary value problems for a second-order linear equation with periodic coefficients. This allows one to obtain asymptotical properties of stability and instability zones of solutions. We show that if there are no turning points, i.e., if , then the lengths of instability zones converge to zero as their number increases, while the lengths of stability zones converge to a positive number. If and function has zeroes, then the lengths of stability and instability zones have finite nonzero limits as the numbers of the corresponding zones infinitely increase. If function is alternating, then the lengths of all stability zones converge to zero and the lengths of all instability zones converge to finite numbers. This yields various stability and instability criteria for solutions of second-order equations with periodic coefficients. The presented results are illustrated by a substantial example. The investigation methods are based on a detailed study of so-called special standard equations and the reduction of original equations to standard equations. Here, asymptotical methods of the theory of singular perturbations and properties of series of special functions are used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0146411618070143", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136763", 
        "issn": [
          "0146-4116", 
          "1558-108X"
        ], 
        "name": "Automatic Control and Computer Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Asymptotical Distributions of Eigenvalues of Periodic and Antiperiodic Boundary Value Problems for Second-Order Differential Equations", 
    "pagination": "797-809", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "01dde83c4dadea60fa43058ca95f93938450d97687229d3b0e7acbd76d4deb05"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0146411618070143"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112534954"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0146411618070143", 
      "https://app.dimensions.ai/details/publication/pub.1112534954"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60338_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS0146411618070143"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070143'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070143'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070143'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070143'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0146411618070143 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3d61fb21eae34755a29a72b4f7fad13f
4 schema:citation sg:pub.10.1007/978-1-4684-3303-6_1
5 sg:pub.10.3103/s0146411616070105
6 schema:datePublished 2018-12
7 schema:datePublishedReg 2018-12-01
8 schema:description Abstract—We consider asymptotical distributions of characteristic constants in periodic and antiperiodic boundary value problems for a second-order linear equation with periodic coefficients. This allows one to obtain asymptotical properties of stability and instability zones of solutions. We show that if there are no turning points, i.e., if , then the lengths of instability zones converge to zero as their number increases, while the lengths of stability zones converge to a positive number. If and function has zeroes, then the lengths of stability and instability zones have finite nonzero limits as the numbers of the corresponding zones infinitely increase. If function is alternating, then the lengths of all stability zones converge to zero and the lengths of all instability zones converge to finite numbers. This yields various stability and instability criteria for solutions of second-order equations with periodic coefficients. The presented results are illustrated by a substantial example. The investigation methods are based on a detailed study of so-called special standard equations and the reduction of original equations to standard equations. Here, asymptotical methods of the theory of singular perturbations and properties of series of special functions are used.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N12aeee92b2174505a8845d158e1c0a4b
13 Nbcaa5391b7034c2aa89ea98d12ac9aaf
14 sg:journal.1136763
15 schema:name Asymptotical Distributions of Eigenvalues of Periodic and Antiperiodic Boundary Value Problems for Second-Order Differential Equations
16 schema:pagination 797-809
17 schema:productId N4483b525f9364366b99daaffbc56fdad
18 Nbbc69069d294455989908f00a9e75441
19 Nd13074a31abb4b0d9b5c45e7a39342d6
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112534954
21 https://doi.org/10.3103/s0146411618070143
22 schema:sdDatePublished 2019-04-11T11:00
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N45ab511d74eb4388ac037beba7cc5a5d
25 schema:url https://link.springer.com/10.3103%2FS0146411618070143
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N0d304970605943aaa7449d23965eb6e1 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
30 schema:familyName Kashchenko
31 schema:givenName S. A.
32 rdf:type schema:Person
33 N12aeee92b2174505a8845d158e1c0a4b schema:volumeNumber 52
34 rdf:type schema:PublicationVolume
35 N3d61fb21eae34755a29a72b4f7fad13f rdf:first N0d304970605943aaa7449d23965eb6e1
36 rdf:rest rdf:nil
37 N4483b525f9364366b99daaffbc56fdad schema:name dimensions_id
38 schema:value pub.1112534954
39 rdf:type schema:PropertyValue
40 N45ab511d74eb4388ac037beba7cc5a5d schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nbbc69069d294455989908f00a9e75441 schema:name readcube_id
43 schema:value 01dde83c4dadea60fa43058ca95f93938450d97687229d3b0e7acbd76d4deb05
44 rdf:type schema:PropertyValue
45 Nbcaa5391b7034c2aa89ea98d12ac9aaf schema:issueNumber 7
46 rdf:type schema:PublicationIssue
47 Nd13074a31abb4b0d9b5c45e7a39342d6 schema:name doi
48 schema:value 10.3103/s0146411618070143
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136763 schema:issn 0146-4116
57 1558-108X
58 schema:name Automatic Control and Computer Sciences
59 rdf:type schema:Periodical
60 sg:pub.10.1007/978-1-4684-3303-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128485
61 https://doi.org/10.1007/978-1-4684-3303-6_1
62 rdf:type schema:CreativeWork
63 sg:pub.10.3103/s0146411616070105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054012523
64 https://doi.org/10.3103/s0146411616070105
65 rdf:type schema:CreativeWork
66 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
67 schema:name Demidov Yaroslavl State University, 150003, Yaroslavl, Russia
68 National Research Nuclear University Moscow Engineering Physics Institute (MEPhI), 115409, Moscow, Russia
69 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...