Difference Approximations of a Reaction–Diffusion Equation on Segments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

S. D. Glyzin

ABSTRACT

The system of phase differences for a chain of diffuse weakly coupled oscillators on a stable integral manifold is constructed and analyzed. It is shown (by means of numerical methods) that Lyapunov dimension growth is close to linear as the number of oscillators in the chain increases. Extensive computations performed for the difference model of the Ginsburg–Landau equation illustrate this result and determine the applicability limits for asymptotic methods. More... »

PAGES

762-776

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s014641161807009x

DOI

http://dx.doi.org/10.3103/s014641161807009x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112534949


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yaroslavl State University", 
          "id": "https://www.grid.ac/institutes/grid.99921.3a", 
          "name": [
            "Demidov Yaroslavl State University, 150003, Yaroslavl, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glyzin", 
        "givenName": "S. D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0041-5553(88)90109-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005514617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01056418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010378005", 
          "https://doi.org/10.1007/bf01056418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(80)90013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024446346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(80)90013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024446346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(85)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030878297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(85)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030878297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10625-005-0159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032633115", 
          "https://doi.org/10.1007/s10625-005-0159-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10625-005-0159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032633115", 
          "https://doi.org/10.1007/s10625-005-0159-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034658804", 
          "https://doi.org/10.1007/bf01646553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034658804", 
          "https://doi.org/10.1007/bf01646553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034658804", 
          "https://doi.org/10.1007/bf01646553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037677363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10625-005-0133-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037776033", 
          "https://doi.org/10.1007/s10625-005-0133-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1996v039n04abeh000141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058172605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu2005v048n02abeh002070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058173719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.1213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.1213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0160.199001a.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071218318"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The system of phase differences for a chain of diffuse weakly coupled oscillators on a stable integral manifold is constructed and analyzed. It is shown (by means of numerical methods) that Lyapunov dimension growth is close to linear as the number of oscillators in the chain increases. Extensive computations performed for the difference model of the Ginsburg\u2013Landau equation illustrate this result and determine the applicability limits for asymptotic methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s014641161807009x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136763", 
        "issn": [
          "0146-4116", 
          "1558-108X"
        ], 
        "name": "Automatic Control and Computer Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Difference Approximations of a Reaction\u2013Diffusion Equation on Segments", 
    "pagination": "762-776", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "78ea49620568429598d2b1f04639d5b89cff9864c4f1cdf495795ff89c712928"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s014641161807009x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112534949"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s014641161807009x", 
      "https://app.dimensions.ai/details/publication/pub.1112534949"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60375_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS014641161807009X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s014641161807009x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s014641161807009x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s014641161807009x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s014641161807009x'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s014641161807009x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Necf7417d713e4f1da51e37c182fe7641
4 schema:citation sg:pub.10.1007/bf01056418
5 sg:pub.10.1007/bf01646553
6 sg:pub.10.1007/s10625-005-0133-2
7 sg:pub.10.1007/s10625-005-0159-5
8 https://doi.org/10.1016/0041-5553(88)90109-7
9 https://doi.org/10.1016/0167-2789(85)90011-9
10 https://doi.org/10.1016/0771-050x(80)90013-3
11 https://doi.org/10.1070/pu1996v039n04abeh000141
12 https://doi.org/10.1070/pu2005v048n02abeh002070
13 https://doi.org/10.1103/physreva.14.2338
14 https://doi.org/10.1103/revmodphys.78.1213
15 https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
16 https://doi.org/10.3367/ufnr.0160.199001a.0003
17 schema:datePublished 2018-12
18 schema:datePublishedReg 2018-12-01
19 schema:description The system of phase differences for a chain of diffuse weakly coupled oscillators on a stable integral manifold is constructed and analyzed. It is shown (by means of numerical methods) that Lyapunov dimension growth is close to linear as the number of oscillators in the chain increases. Extensive computations performed for the difference model of the Ginsburg–Landau equation illustrate this result and determine the applicability limits for asymptotic methods.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N4cab060bfd9341b3ad52a5516cd89ec7
24 N52af06c672bd478e8babbcc3bebe1bf3
25 sg:journal.1136763
26 schema:name Difference Approximations of a Reaction–Diffusion Equation on Segments
27 schema:pagination 762-776
28 schema:productId N572a27df28ad4a648cb941076b7922c9
29 N80e34a82dc3743aca85f5e3432b0f449
30 N8e578e497c4142b998750379e5b2faf9
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112534949
32 https://doi.org/10.3103/s014641161807009x
33 schema:sdDatePublished 2019-04-11T11:06
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N3ef6109333714cbc9183d140bfa22925
36 schema:url https://link.springer.com/10.3103%2FS014641161807009X
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N031311001970469680851ca1da0b5d64 schema:affiliation https://www.grid.ac/institutes/grid.99921.3a
41 schema:familyName Glyzin
42 schema:givenName S. D.
43 rdf:type schema:Person
44 N3ef6109333714cbc9183d140bfa22925 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N4cab060bfd9341b3ad52a5516cd89ec7 schema:issueNumber 7
47 rdf:type schema:PublicationIssue
48 N52af06c672bd478e8babbcc3bebe1bf3 schema:volumeNumber 52
49 rdf:type schema:PublicationVolume
50 N572a27df28ad4a648cb941076b7922c9 schema:name doi
51 schema:value 10.3103/s014641161807009x
52 rdf:type schema:PropertyValue
53 N80e34a82dc3743aca85f5e3432b0f449 schema:name readcube_id
54 schema:value 78ea49620568429598d2b1f04639d5b89cff9864c4f1cdf495795ff89c712928
55 rdf:type schema:PropertyValue
56 N8e578e497c4142b998750379e5b2faf9 schema:name dimensions_id
57 schema:value pub.1112534949
58 rdf:type schema:PropertyValue
59 Necf7417d713e4f1da51e37c182fe7641 rdf:first N031311001970469680851ca1da0b5d64
60 rdf:rest rdf:nil
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
65 schema:name Applied Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1136763 schema:issn 0146-4116
68 1558-108X
69 schema:name Automatic Control and Computer Sciences
70 rdf:type schema:Periodical
71 sg:pub.10.1007/bf01056418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010378005
72 https://doi.org/10.1007/bf01056418
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf01646553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034658804
75 https://doi.org/10.1007/bf01646553
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/s10625-005-0133-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037776033
78 https://doi.org/10.1007/s10625-005-0133-2
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s10625-005-0159-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032633115
81 https://doi.org/10.1007/s10625-005-0159-5
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0041-5553(88)90109-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005514617
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0167-2789(85)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030878297
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0771-050x(80)90013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024446346
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1070/pu1996v039n04abeh000141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058172605
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1070/pu2005v048n02abeh002070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058173719
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreva.14.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466055
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/revmodphys.78.1213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839608
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037677363
98 rdf:type schema:CreativeWork
99 https://doi.org/10.3367/ufnr.0160.199001a.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071218318
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.99921.3a schema:alternateName Yaroslavl State University
102 schema:name Demidov Yaroslavl State University, 150003, Yaroslavl, Russia
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...