Decoding the Tensor Product of MLD Codes and Applications for Code Cryptosystems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. M. Deundyak, Y. V. Kosolapov, E. A. Lelyuk

ABSTRACT

For the practical application of code cryptosystems such as McEliece, the code used in the cryptosystem should have a fast decoding algorithm. On the other hand, the code used must ensure that finding a secret key from a known public key is impractical with a relatively small key size. In this connection, in the present paper it is proposed to use tensor product of group MLD codes and in a McEliece-type cryptosystem. The algebraic structure of code in a general case differs from the structure of codes and , so it is possible to build stable cryptosystems of the McEliece type even on the basis of codes for which successful attacks on the key are known. However, in this way there is a problem of decoding code . The main result of this paper is the construction and validation of a series of fast algorithms needed for decoding this code. The process of constructing the decoder relies heavily on the group properties of code . As an application, the McEliece-type cryptosystem is constructed on code and an estimate is given of its resistance to attack on the key under the assumption that for code cryptosystems on codes an effective attack on the key is possible. The results obtained are numerically illustrated in the case when and are Reed–Muller–Berman codes for which the corresponding code cryptosystem was hacked by L. Minder and A. Shokrollahi (2007). More... »

PAGES

647-657

References to SciGraph publications

  • 2001-05-18. Ideals over a Non-Commutative Ring and their Application in Cryptology in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’91
  • 2001-09. Selecting Cryptographic Key Sizes in JOURNAL OF CRYPTOLOGY
  • 2007. Cryptanalysis of the Sidelnikov Cryptosystem in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2007
  • 2008-04. Structural Attacks for Public Key Cryptosystems based on Gabidulin Codes in JOURNAL OF CRYPTOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s0146411618070064

    DOI

    http://dx.doi.org/10.3103/s0146411618070064

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112534946


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Southern Federal University", 
              "id": "https://www.grid.ac/institutes/grid.182798.d", 
              "name": [
                "Southern Federal University, 344006, Rostov-on-Don, Russia", 
                "FGNU NII Specvuzavtomatika, 344002, Rostov-on-Don, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deundyak", 
            "givenName": "V. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southern Federal University", 
              "id": "https://www.grid.ac/institutes/grid.182798.d", 
              "name": [
                "Southern Federal University, 344006, Rostov-on-Don, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kosolapov", 
            "givenName": "Y. V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southern Federal University", 
              "id": "https://www.grid.ac/institutes/grid.182798.d", 
              "name": [
                "Southern Federal University, 344006, Rostov-on-Don, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lelyuk", 
            "givenName": "E. A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-72540-4_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000125075", 
              "https://doi.org/10.1007/978-3-540-72540-4_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-007-9003-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012864274", 
              "https://doi.org/10.1007/s00145-007-9003-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-007-9003-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012864274", 
              "https://doi.org/10.1007/s00145-007-9003-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-001-0009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021562387", 
              "https://doi.org/10.1007/s00145-001-0009-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46416-6_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030463988", 
              "https://doi.org/10.1007/3-540-46416-6_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46416-6_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030463988", 
              "https://doi.org/10.1007/3-540-46416-6_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18255/1818-1015-2015-4-464-482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068592114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18255/1818-1015-2016-2-137-152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068592147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/dm1264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072362493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1994.365700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095740049"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "For the practical application of code cryptosystems such as McEliece, the code used in the cryptosystem should have a fast decoding algorithm. On the other hand, the code used must ensure that finding a secret key from a known public key is impractical with a relatively small key size. In this connection, in the present paper it is proposed to use tensor product of group MLD codes and in a McEliece-type cryptosystem. The algebraic structure of code in a general case differs from the structure of codes and , so it is possible to build stable cryptosystems of the McEliece type even on the basis of codes for which successful attacks on the key are known. However, in this way there is a problem of decoding code . The main result of this paper is the construction and validation of a series of fast algorithms needed for decoding this code. The process of constructing the decoder relies heavily on the group properties of code . As an application, the McEliece-type cryptosystem is constructed on code and an estimate is given of its resistance to attack on the key under the assumption that for code cryptosystems on codes an effective attack on the key is possible. The results obtained are numerically illustrated in the case when and are Reed\u2013Muller\u2013Berman codes for which the corresponding code cryptosystem was hacked by L. Minder and A. Shokrollahi (2007).", 
        "genre": "research_article", 
        "id": "sg:pub.10.3103/s0146411618070064", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136763", 
            "issn": [
              "0146-4116", 
              "1558-108X"
            ], 
            "name": "Automatic Control and Computer Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "name": "Decoding the Tensor Product of MLD Codes and Applications for Code Cryptosystems", 
        "pagination": "647-657", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e44126ed715ef90bc0d4abae97ba2364805e596e72c7fce19f0d5bce556661d6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s0146411618070064"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112534946"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s0146411618070064", 
          "https://app.dimensions.ai/details/publication/pub.1112534946"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60367_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.3103%2FS0146411618070064"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070064'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070064'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070064'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070064'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s0146411618070064 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author Nd0463203423c41f3b3a1d5cc3d3bddc0
    4 schema:citation sg:pub.10.1007/3-540-46416-6_41
    5 sg:pub.10.1007/978-3-540-72540-4_20
    6 sg:pub.10.1007/s00145-001-0009-4
    7 sg:pub.10.1007/s00145-007-9003-9
    8 https://doi.org/10.1109/sfcs.1994.365700
    9 https://doi.org/10.18255/1818-1015-2015-4-464-482
    10 https://doi.org/10.18255/1818-1015-2016-2-137-152
    11 https://doi.org/10.4213/dm1264
    12 schema:datePublished 2018-12
    13 schema:datePublishedReg 2018-12-01
    14 schema:description For the practical application of code cryptosystems such as McEliece, the code used in the cryptosystem should have a fast decoding algorithm. On the other hand, the code used must ensure that finding a secret key from a known public key is impractical with a relatively small key size. In this connection, in the present paper it is proposed to use tensor product of group MLD codes and in a McEliece-type cryptosystem. The algebraic structure of code in a general case differs from the structure of codes and , so it is possible to build stable cryptosystems of the McEliece type even on the basis of codes for which successful attacks on the key are known. However, in this way there is a problem of decoding code . The main result of this paper is the construction and validation of a series of fast algorithms needed for decoding this code. The process of constructing the decoder relies heavily on the group properties of code . As an application, the McEliece-type cryptosystem is constructed on code and an estimate is given of its resistance to attack on the key under the assumption that for code cryptosystems on codes an effective attack on the key is possible. The results obtained are numerically illustrated in the case when and are Reed–Muller–Berman codes for which the corresponding code cryptosystem was hacked by L. Minder and A. Shokrollahi (2007).
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N90b8e87fb20443d3a1e017f56b454fc1
    19 Nd4f3201d706f48c188bb72fa4a92c026
    20 sg:journal.1136763
    21 schema:name Decoding the Tensor Product of MLD Codes and Applications for Code Cryptosystems
    22 schema:pagination 647-657
    23 schema:productId N935f4b3a34c9440f8c73f54a775d0205
    24 Nb92a8672964f4be3b1223451022a5580
    25 Nc44978165d4844f98c912e21673aad0b
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112534946
    27 https://doi.org/10.3103/s0146411618070064
    28 schema:sdDatePublished 2019-04-11T11:05
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N94559fc1de4e48f4aa98f09b4fb5ae44
    31 schema:url https://link.springer.com/10.3103%2FS0146411618070064
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N2cff1d72c7e84cc5b3efb4d592308efb schema:affiliation https://www.grid.ac/institutes/grid.182798.d
    36 schema:familyName Lelyuk
    37 schema:givenName E. A.
    38 rdf:type schema:Person
    39 N524985c4b05a4e4bbad225711b0d8fdd rdf:first Ne3ff8b58ba9f4477994df146c816aea9
    40 rdf:rest N6f1f2b127c7342d599f9741c155dcd22
    41 N6f1f2b127c7342d599f9741c155dcd22 rdf:first N2cff1d72c7e84cc5b3efb4d592308efb
    42 rdf:rest rdf:nil
    43 N90b8e87fb20443d3a1e017f56b454fc1 schema:volumeNumber 52
    44 rdf:type schema:PublicationVolume
    45 N935f4b3a34c9440f8c73f54a775d0205 schema:name dimensions_id
    46 schema:value pub.1112534946
    47 rdf:type schema:PropertyValue
    48 N94559fc1de4e48f4aa98f09b4fb5ae44 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nb92a8672964f4be3b1223451022a5580 schema:name readcube_id
    51 schema:value e44126ed715ef90bc0d4abae97ba2364805e596e72c7fce19f0d5bce556661d6
    52 rdf:type schema:PropertyValue
    53 Nc44978165d4844f98c912e21673aad0b schema:name doi
    54 schema:value 10.3103/s0146411618070064
    55 rdf:type schema:PropertyValue
    56 Nc57b36cc43934809aabb48e5da566adc schema:affiliation https://www.grid.ac/institutes/grid.182798.d
    57 schema:familyName Deundyak
    58 schema:givenName V. M.
    59 rdf:type schema:Person
    60 Nd0463203423c41f3b3a1d5cc3d3bddc0 rdf:first Nc57b36cc43934809aabb48e5da566adc
    61 rdf:rest N524985c4b05a4e4bbad225711b0d8fdd
    62 Nd4f3201d706f48c188bb72fa4a92c026 schema:issueNumber 7
    63 rdf:type schema:PublicationIssue
    64 Ne3ff8b58ba9f4477994df146c816aea9 schema:affiliation https://www.grid.ac/institutes/grid.182798.d
    65 schema:familyName Kosolapov
    66 schema:givenName Y. V.
    67 rdf:type schema:Person
    68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Information and Computing Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Data Format
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1136763 schema:issn 0146-4116
    75 1558-108X
    76 schema:name Automatic Control and Computer Sciences
    77 rdf:type schema:Periodical
    78 sg:pub.10.1007/3-540-46416-6_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030463988
    79 https://doi.org/10.1007/3-540-46416-6_41
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/978-3-540-72540-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000125075
    82 https://doi.org/10.1007/978-3-540-72540-4_20
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/s00145-001-0009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021562387
    85 https://doi.org/10.1007/s00145-001-0009-4
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/s00145-007-9003-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012864274
    88 https://doi.org/10.1007/s00145-007-9003-9
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1109/sfcs.1994.365700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095740049
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.18255/1818-1015-2015-4-464-482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068592114
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.18255/1818-1015-2016-2-137-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068592147
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.4213/dm1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072362493
    97 rdf:type schema:CreativeWork
    98 https://www.grid.ac/institutes/grid.182798.d schema:alternateName Southern Federal University
    99 schema:name FGNU NII Specvuzavtomatika, 344002, Rostov-on-Don, Russia
    100 Southern Federal University, 344006, Rostov-on-Don, Russia
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...