Decoding the Tensor Product of MLD Codes and Applications for Code Cryptosystems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. M. Deundyak, Y. V. Kosolapov, E. A. Lelyuk

ABSTRACT

For the practical application of code cryptosystems such as McEliece, the code used in the cryptosystem should have a fast decoding algorithm. On the other hand, the code used must ensure that finding a secret key from a known public key is impractical with a relatively small key size. In this connection, in the present paper it is proposed to use tensor product of group MLD codes and in a McEliece-type cryptosystem. The algebraic structure of code in a general case differs from the structure of codes and , so it is possible to build stable cryptosystems of the McEliece type even on the basis of codes for which successful attacks on the key are known. However, in this way there is a problem of decoding code . The main result of this paper is the construction and validation of a series of fast algorithms needed for decoding this code. The process of constructing the decoder relies heavily on the group properties of code . As an application, the McEliece-type cryptosystem is constructed on code and an estimate is given of its resistance to attack on the key under the assumption that for code cryptosystems on codes an effective attack on the key is possible. The results obtained are numerically illustrated in the case when and are Reed–Muller–Berman codes for which the corresponding code cryptosystem was hacked by L. Minder and A. Shokrollahi (2007). More... »

PAGES

647-657

References to SciGraph publications

  • 2001-05-18. Ideals over a Non-Commutative Ring and their Application in Cryptology in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’91
  • 2001-09. Selecting Cryptographic Key Sizes in JOURNAL OF CRYPTOLOGY
  • 2007. Cryptanalysis of the Sidelnikov Cryptosystem in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2007
  • 2008-04. Structural Attacks for Public Key Cryptosystems based on Gabidulin Codes in JOURNAL OF CRYPTOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s0146411618070064

    DOI

    http://dx.doi.org/10.3103/s0146411618070064

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112534946


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Southern Federal University", 
              "id": "https://www.grid.ac/institutes/grid.182798.d", 
              "name": [
                "Southern Federal University, 344006, Rostov-on-Don, Russia", 
                "FGNU NII Specvuzavtomatika, 344002, Rostov-on-Don, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deundyak", 
            "givenName": "V. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southern Federal University", 
              "id": "https://www.grid.ac/institutes/grid.182798.d", 
              "name": [
                "Southern Federal University, 344006, Rostov-on-Don, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kosolapov", 
            "givenName": "Y. V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southern Federal University", 
              "id": "https://www.grid.ac/institutes/grid.182798.d", 
              "name": [
                "Southern Federal University, 344006, Rostov-on-Don, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lelyuk", 
            "givenName": "E. A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-72540-4_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000125075", 
              "https://doi.org/10.1007/978-3-540-72540-4_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-007-9003-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012864274", 
              "https://doi.org/10.1007/s00145-007-9003-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-007-9003-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012864274", 
              "https://doi.org/10.1007/s00145-007-9003-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-001-0009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021562387", 
              "https://doi.org/10.1007/s00145-001-0009-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46416-6_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030463988", 
              "https://doi.org/10.1007/3-540-46416-6_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46416-6_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030463988", 
              "https://doi.org/10.1007/3-540-46416-6_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18255/1818-1015-2015-4-464-482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068592114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18255/1818-1015-2016-2-137-152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068592147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/dm1264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072362493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1994.365700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095740049"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "For the practical application of code cryptosystems such as McEliece, the code used in the cryptosystem should have a fast decoding algorithm. On the other hand, the code used must ensure that finding a secret key from a known public key is impractical with a relatively small key size. In this connection, in the present paper it is proposed to use tensor product of group MLD codes and in a McEliece-type cryptosystem. The algebraic structure of code in a general case differs from the structure of codes and , so it is possible to build stable cryptosystems of the McEliece type even on the basis of codes for which successful attacks on the key are known. However, in this way there is a problem of decoding code . The main result of this paper is the construction and validation of a series of fast algorithms needed for decoding this code. The process of constructing the decoder relies heavily on the group properties of code . As an application, the McEliece-type cryptosystem is constructed on code and an estimate is given of its resistance to attack on the key under the assumption that for code cryptosystems on codes an effective attack on the key is possible. The results obtained are numerically illustrated in the case when and are Reed\u2013Muller\u2013Berman codes for which the corresponding code cryptosystem was hacked by L. Minder and A. Shokrollahi (2007).", 
        "genre": "research_article", 
        "id": "sg:pub.10.3103/s0146411618070064", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136763", 
            "issn": [
              "0146-4116", 
              "1558-108X"
            ], 
            "name": "Automatic Control and Computer Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "name": "Decoding the Tensor Product of MLD Codes and Applications for Code Cryptosystems", 
        "pagination": "647-657", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e44126ed715ef90bc0d4abae97ba2364805e596e72c7fce19f0d5bce556661d6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s0146411618070064"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112534946"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s0146411618070064", 
          "https://app.dimensions.ai/details/publication/pub.1112534946"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60367_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.3103%2FS0146411618070064"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070064'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070064'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070064'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411618070064'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s0146411618070064 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author Nb1d845dea111415a97324e45131253d6
    4 schema:citation sg:pub.10.1007/3-540-46416-6_41
    5 sg:pub.10.1007/978-3-540-72540-4_20
    6 sg:pub.10.1007/s00145-001-0009-4
    7 sg:pub.10.1007/s00145-007-9003-9
    8 https://doi.org/10.1109/sfcs.1994.365700
    9 https://doi.org/10.18255/1818-1015-2015-4-464-482
    10 https://doi.org/10.18255/1818-1015-2016-2-137-152
    11 https://doi.org/10.4213/dm1264
    12 schema:datePublished 2018-12
    13 schema:datePublishedReg 2018-12-01
    14 schema:description For the practical application of code cryptosystems such as McEliece, the code used in the cryptosystem should have a fast decoding algorithm. On the other hand, the code used must ensure that finding a secret key from a known public key is impractical with a relatively small key size. In this connection, in the present paper it is proposed to use tensor product of group MLD codes and in a McEliece-type cryptosystem. The algebraic structure of code in a general case differs from the structure of codes and , so it is possible to build stable cryptosystems of the McEliece type even on the basis of codes for which successful attacks on the key are known. However, in this way there is a problem of decoding code . The main result of this paper is the construction and validation of a series of fast algorithms needed for decoding this code. The process of constructing the decoder relies heavily on the group properties of code . As an application, the McEliece-type cryptosystem is constructed on code and an estimate is given of its resistance to attack on the key under the assumption that for code cryptosystems on codes an effective attack on the key is possible. The results obtained are numerically illustrated in the case when and are Reed–Muller–Berman codes for which the corresponding code cryptosystem was hacked by L. Minder and A. Shokrollahi (2007).
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf Ne378737a71074851a145d37db3bc4a9b
    19 Nf7d4dbdef71e455e927402e47b2267bf
    20 sg:journal.1136763
    21 schema:name Decoding the Tensor Product of MLD Codes and Applications for Code Cryptosystems
    22 schema:pagination 647-657
    23 schema:productId N520284f6ede24d1f81cfd3feb3a4e326
    24 Nc9fc0534d2254e9fa5d38426c9607e9e
    25 Nede46c12df6646f699f6c25ffae8da3e
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112534946
    27 https://doi.org/10.3103/s0146411618070064
    28 schema:sdDatePublished 2019-04-11T11:05
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Na4d6eaa38a8d4d1a950abb2434720533
    31 schema:url https://link.springer.com/10.3103%2FS0146411618070064
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N3cb40848455b4c12b1ba9a4884361d03 rdf:first N6a18d1b0a1b14fc9a44ae7846a7a382d
    36 rdf:rest N4941c1e1ef214a0c97b4891caae80ca7
    37 N4941c1e1ef214a0c97b4891caae80ca7 rdf:first Ne767e2f052dc4d8baa53bf53dbb9bf60
    38 rdf:rest rdf:nil
    39 N520284f6ede24d1f81cfd3feb3a4e326 schema:name dimensions_id
    40 schema:value pub.1112534946
    41 rdf:type schema:PropertyValue
    42 N6a18d1b0a1b14fc9a44ae7846a7a382d schema:affiliation https://www.grid.ac/institutes/grid.182798.d
    43 schema:familyName Kosolapov
    44 schema:givenName Y. V.
    45 rdf:type schema:Person
    46 N945b84c57ccb4ba3b826ff9bacc19686 schema:affiliation https://www.grid.ac/institutes/grid.182798.d
    47 schema:familyName Deundyak
    48 schema:givenName V. M.
    49 rdf:type schema:Person
    50 Na4d6eaa38a8d4d1a950abb2434720533 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nb1d845dea111415a97324e45131253d6 rdf:first N945b84c57ccb4ba3b826ff9bacc19686
    53 rdf:rest N3cb40848455b4c12b1ba9a4884361d03
    54 Nc9fc0534d2254e9fa5d38426c9607e9e schema:name readcube_id
    55 schema:value e44126ed715ef90bc0d4abae97ba2364805e596e72c7fce19f0d5bce556661d6
    56 rdf:type schema:PropertyValue
    57 Ne378737a71074851a145d37db3bc4a9b schema:issueNumber 7
    58 rdf:type schema:PublicationIssue
    59 Ne767e2f052dc4d8baa53bf53dbb9bf60 schema:affiliation https://www.grid.ac/institutes/grid.182798.d
    60 schema:familyName Lelyuk
    61 schema:givenName E. A.
    62 rdf:type schema:Person
    63 Nede46c12df6646f699f6c25ffae8da3e schema:name doi
    64 schema:value 10.3103/s0146411618070064
    65 rdf:type schema:PropertyValue
    66 Nf7d4dbdef71e455e927402e47b2267bf schema:volumeNumber 52
    67 rdf:type schema:PublicationVolume
    68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Information and Computing Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Data Format
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1136763 schema:issn 0146-4116
    75 1558-108X
    76 schema:name Automatic Control and Computer Sciences
    77 rdf:type schema:Periodical
    78 sg:pub.10.1007/3-540-46416-6_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030463988
    79 https://doi.org/10.1007/3-540-46416-6_41
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/978-3-540-72540-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000125075
    82 https://doi.org/10.1007/978-3-540-72540-4_20
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/s00145-001-0009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021562387
    85 https://doi.org/10.1007/s00145-001-0009-4
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/s00145-007-9003-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012864274
    88 https://doi.org/10.1007/s00145-007-9003-9
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1109/sfcs.1994.365700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095740049
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.18255/1818-1015-2015-4-464-482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068592114
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.18255/1818-1015-2016-2-137-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068592147
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.4213/dm1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072362493
    97 rdf:type schema:CreativeWork
    98 https://www.grid.ac/institutes/grid.182798.d schema:alternateName Southern Federal University
    99 schema:name FGNU NII Specvuzavtomatika, 344002, Rostov-on-Don, Russia
    100 Southern Federal University, 344006, Rostov-on-Don, Russia
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...