Relaxation Cycles in a Model of Synaptically Interacting Oscillators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

M. M. Preobrazhenskaia

ABSTRACT

We study the mathematical model of a circular neural network with synaptic interaction between the elements. The model is a system of scalar nonlinear differential-difference equations, the right parts of which depend on large parameters. The unknown functions included in the system characterize the membrane potentials of the neurons. The search for relaxation cycles within the system of equations is of interest. Thus, we postulate the problem of finding its solution in the form of discrete travelling waves. This allows us to study a scalar nonlinear differential-difference equation with two delays instead of the original system. We define a limit object which represents a relay equation with two delays by passing the large parameter to infinity. Using this construction and the step-by-step method, we show that there are six cases for restrictions on the parameters. In each case there exists a unique periodic solution to the relay equation with the initial function from a suitable function class. Using the Poincaré operator and the Schauder principle, we prove the existence of relaxation periodic solutions of a singularly perturbed equation with two delays. We find the asymptotics of this solution and prove that the solution is close to the solution of the relay equation. The uniqueness and stability of the solutions of the differential-difference equation with two delays follow from the exponential bound on the Fréchet derivative of the Poincaré operator. More... »

PAGES

783-797

References to SciGraph publications

  • 2005. An Introduction to Dynamical Systems and Neuronal Dynamics in TUTORIALS IN MATHEMATICAL BIOSCIENCES I
  • 2011-12. Relaxation self-oscillations in neuron systems: II in DIFFERENTIAL EQUATIONS
  • 2013-10. On a method for mathematical modeling of chemical synapses in DIFFERENTIAL EQUATIONS
  • 2012-02. Relaxation self-oscillations in neuron systems: III in DIFFERENTIAL EQUATIONS
  • 2012-05. Discrete autowaves in neural systems in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 1995-12. Anti-phase solutions in relaxation oscillators coupled through excitatory interactions in JOURNAL OF MATHEMATICAL BIOLOGY
  • 1993-03. Rapid synchronization through fast threshold modulation in BIOLOGICAL CYBERNETICS
  • 2010-12. A modification of Hutchinson’s equation in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2011-07. Relaxation self-oscillations in neuron systems: I in DIFFERENTIAL EQUATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s0146411617070379

    DOI

    http://dx.doi.org/10.3103/s0146411617070379

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101073968


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Scientific Center", 
              "id": "https://www.grid.ac/institutes/grid.465407.4", 
              "name": [
                "Demidov Yaroslavl State University, 150003, Yaroslavl, Russia", 
                "Scientific Center in Chernogolovka RAS, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Preobrazhenskaia", 
            "givenName": "M. M.", 
            "id": "sg:person.014230770702.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230770702.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00198772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007511494", 
              "https://doi.org/10.1007/bf00198772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00198772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007511494", 
              "https://doi.org/10.1007/bf00198772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0012266111120019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009430572", 
              "https://doi.org/10.1134/s0012266111120019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0012266112020012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012649782", 
              "https://doi.org/10.1134/s0012266112020012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542510120031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019214202", 
              "https://doi.org/10.1134/s0965542510120031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00169564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019702404", 
              "https://doi.org/10.1007/bf00169564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00169564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019702404", 
              "https://doi.org/10.1007/bf00169564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0012266111070020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020633032", 
              "https://doi.org/10.1134/s0012266111070020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1948.tb39854.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028759908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542512050090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035216242", 
              "https://doi.org/10.1134/s0965542512050090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31544-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037921067", 
              "https://doi.org/10.1007/978-3-540-31544-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(61)86902-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039086367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0012266113100017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050275506", 
              "https://doi.org/10.1134/s0012266113100017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/im2013v077n02abeh002636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058168686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm2015v070n03abeh004951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058198497"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "We study the mathematical model of a circular neural network with synaptic interaction between the elements. The model is a system of scalar nonlinear differential-difference equations, the right parts of which depend on large parameters. The unknown functions included in the system characterize the membrane potentials of the neurons. The search for relaxation cycles within the system of equations is of interest. Thus, we postulate the problem of finding its solution in the form of discrete travelling waves. This allows us to study a scalar nonlinear differential-difference equation with two delays instead of the original system. We define a limit object which represents a relay equation with two delays by passing the large parameter to infinity. Using this construction and the step-by-step method, we show that there are six cases for restrictions on the parameters. In each case there exists a unique periodic solution to the relay equation with the initial function from a suitable function class. Using the Poincar\u00e9 operator and the Schauder principle, we prove the existence of relaxation periodic solutions of a singularly perturbed equation with two delays. We find the asymptotics of this solution and prove that the solution is close to the solution of the relay equation. The uniqueness and stability of the solutions of the differential-difference equation with two delays follow from the exponential bound on the Fr\u00e9chet derivative of the Poincar\u00e9 operator.", 
        "genre": "research_article", 
        "id": "sg:pub.10.3103/s0146411617070379", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136763", 
            "issn": [
              "0146-4116", 
              "1558-108X"
            ], 
            "name": "Automatic Control and Computer Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "name": "Relaxation Cycles in a Model of Synaptically Interacting Oscillators", 
        "pagination": "783-797", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dd4540902b1391c3f1876ca8adaaf7cc1fc727ee89afa709fcc9b75164124383"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s0146411617070379"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101073968"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s0146411617070379", 
          "https://app.dimensions.ai/details/publication/pub.1101073968"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.3103/S0146411617070379"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070379'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070379'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070379'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070379'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s0146411617070379 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na634e3e21b704797b226b028982a66df
    4 schema:citation sg:pub.10.1007/978-3-540-31544-5_2
    5 sg:pub.10.1007/bf00169564
    6 sg:pub.10.1007/bf00198772
    7 sg:pub.10.1134/s0012266111070020
    8 sg:pub.10.1134/s0012266111120019
    9 sg:pub.10.1134/s0012266112020012
    10 sg:pub.10.1134/s0012266113100017
    11 sg:pub.10.1134/s0965542510120031
    12 sg:pub.10.1134/s0965542512050090
    13 https://doi.org/10.1016/s0006-3495(61)86902-6
    14 https://doi.org/10.1070/im2013v077n02abeh002636
    15 https://doi.org/10.1070/rm2015v070n03abeh004951
    16 https://doi.org/10.1111/j.1749-6632.1948.tb39854.x
    17 schema:datePublished 2017-12
    18 schema:datePublishedReg 2017-12-01
    19 schema:description We study the mathematical model of a circular neural network with synaptic interaction between the elements. The model is a system of scalar nonlinear differential-difference equations, the right parts of which depend on large parameters. The unknown functions included in the system characterize the membrane potentials of the neurons. The search for relaxation cycles within the system of equations is of interest. Thus, we postulate the problem of finding its solution in the form of discrete travelling waves. This allows us to study a scalar nonlinear differential-difference equation with two delays instead of the original system. We define a limit object which represents a relay equation with two delays by passing the large parameter to infinity. Using this construction and the step-by-step method, we show that there are six cases for restrictions on the parameters. In each case there exists a unique periodic solution to the relay equation with the initial function from a suitable function class. Using the Poincaré operator and the Schauder principle, we prove the existence of relaxation periodic solutions of a singularly perturbed equation with two delays. We find the asymptotics of this solution and prove that the solution is close to the solution of the relay equation. The uniqueness and stability of the solutions of the differential-difference equation with two delays follow from the exponential bound on the Fréchet derivative of the Poincaré operator.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N7fbbe4d4014442b281628b4d7dbb7768
    24 Nbde71001a1264cfab99c15534d93127d
    25 sg:journal.1136763
    26 schema:name Relaxation Cycles in a Model of Synaptically Interacting Oscillators
    27 schema:pagination 783-797
    28 schema:productId N01cedae5b5964a6a9bee94979de4b4d4
    29 N899a836ded1f4dd28db425691f4cbcde
    30 Nfc4edae0426d42248931dfa82441d0f1
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101073968
    32 https://doi.org/10.3103/s0146411617070379
    33 schema:sdDatePublished 2019-04-11T01:53
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nb0e80bc3a2794acf91b2d89d8e4362e0
    36 schema:url http://link.springer.com/10.3103/S0146411617070379
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N01cedae5b5964a6a9bee94979de4b4d4 schema:name readcube_id
    41 schema:value dd4540902b1391c3f1876ca8adaaf7cc1fc727ee89afa709fcc9b75164124383
    42 rdf:type schema:PropertyValue
    43 N7fbbe4d4014442b281628b4d7dbb7768 schema:volumeNumber 51
    44 rdf:type schema:PublicationVolume
    45 N899a836ded1f4dd28db425691f4cbcde schema:name dimensions_id
    46 schema:value pub.1101073968
    47 rdf:type schema:PropertyValue
    48 Na634e3e21b704797b226b028982a66df rdf:first sg:person.014230770702.44
    49 rdf:rest rdf:nil
    50 Nb0e80bc3a2794acf91b2d89d8e4362e0 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nbde71001a1264cfab99c15534d93127d schema:issueNumber 7
    53 rdf:type schema:PublicationIssue
    54 Nfc4edae0426d42248931dfa82441d0f1 schema:name doi
    55 schema:value 10.3103/s0146411617070379
    56 rdf:type schema:PropertyValue
    57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Mathematical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Pure Mathematics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1136763 schema:issn 0146-4116
    64 1558-108X
    65 schema:name Automatic Control and Computer Sciences
    66 rdf:type schema:Periodical
    67 sg:person.014230770702.44 schema:affiliation https://www.grid.ac/institutes/grid.465407.4
    68 schema:familyName Preobrazhenskaia
    69 schema:givenName M. M.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230770702.44
    71 rdf:type schema:Person
    72 sg:pub.10.1007/978-3-540-31544-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037921067
    73 https://doi.org/10.1007/978-3-540-31544-5_2
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf00169564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019702404
    76 https://doi.org/10.1007/bf00169564
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf00198772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007511494
    79 https://doi.org/10.1007/bf00198772
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1134/s0012266111070020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
    82 https://doi.org/10.1134/s0012266111070020
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1134/s0012266111120019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
    85 https://doi.org/10.1134/s0012266111120019
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1134/s0012266112020012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649782
    88 https://doi.org/10.1134/s0012266112020012
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1134/s0012266113100017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050275506
    91 https://doi.org/10.1134/s0012266113100017
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1134/s0965542510120031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019214202
    94 https://doi.org/10.1134/s0965542510120031
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1134/s0965542512050090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035216242
    97 https://doi.org/10.1134/s0965542512050090
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/s0006-3495(61)86902-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039086367
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1070/im2013v077n02abeh002636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058168686
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1070/rm2015v070n03abeh004951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198497
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1111/j.1749-6632.1948.tb39854.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028759908
    106 rdf:type schema:CreativeWork
    107 https://www.grid.ac/institutes/grid.465407.4 schema:alternateName Scientific Center
    108 schema:name Demidov Yaroslavl State University, 150003, Yaroslavl, Russia
    109 Scientific Center in Chernogolovka RAS, 142432, Chernogolovka, Moscow oblast, Russia
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...