Relaxation Cycles in a Model of Synaptically Interacting Oscillators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

M. M. Preobrazhenskaia

ABSTRACT

We study the mathematical model of a circular neural network with synaptic interaction between the elements. The model is a system of scalar nonlinear differential-difference equations, the right parts of which depend on large parameters. The unknown functions included in the system characterize the membrane potentials of the neurons. The search for relaxation cycles within the system of equations is of interest. Thus, we postulate the problem of finding its solution in the form of discrete travelling waves. This allows us to study a scalar nonlinear differential-difference equation with two delays instead of the original system. We define a limit object which represents a relay equation with two delays by passing the large parameter to infinity. Using this construction and the step-by-step method, we show that there are six cases for restrictions on the parameters. In each case there exists a unique periodic solution to the relay equation with the initial function from a suitable function class. Using the Poincaré operator and the Schauder principle, we prove the existence of relaxation periodic solutions of a singularly perturbed equation with two delays. We find the asymptotics of this solution and prove that the solution is close to the solution of the relay equation. The uniqueness and stability of the solutions of the differential-difference equation with two delays follow from the exponential bound on the Fréchet derivative of the Poincaré operator. More... »

PAGES

783-797

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0146411617070379

DOI

http://dx.doi.org/10.3103/s0146411617070379

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101073968


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scientific Center", 
          "id": "https://www.grid.ac/institutes/grid.465407.4", 
          "name": [
            "Demidov Yaroslavl State University, 150003, Yaroslavl, Russia", 
            "Scientific Center in Chernogolovka RAS, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskaia", 
        "givenName": "M. M.", 
        "id": "sg:person.014230770702.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230770702.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00198772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511494", 
          "https://doi.org/10.1007/bf00198772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00198772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511494", 
          "https://doi.org/10.1007/bf00198772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266111120019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009430572", 
          "https://doi.org/10.1134/s0012266111120019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266112020012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649782", 
          "https://doi.org/10.1134/s0012266112020012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542510120031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019214202", 
          "https://doi.org/10.1134/s0965542510120031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00169564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019702404", 
          "https://doi.org/10.1007/bf00169564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00169564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019702404", 
          "https://doi.org/10.1007/bf00169564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266111070020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020633032", 
          "https://doi.org/10.1134/s0012266111070020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1948.tb39854.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028759908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542512050090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035216242", 
          "https://doi.org/10.1134/s0965542512050090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31544-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037921067", 
          "https://doi.org/10.1007/978-3-540-31544-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(61)86902-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039086367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266113100017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050275506", 
          "https://doi.org/10.1134/s0012266113100017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/im2013v077n02abeh002636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058168686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2015v070n03abeh004951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198497"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We study the mathematical model of a circular neural network with synaptic interaction between the elements. The model is a system of scalar nonlinear differential-difference equations, the right parts of which depend on large parameters. The unknown functions included in the system characterize the membrane potentials of the neurons. The search for relaxation cycles within the system of equations is of interest. Thus, we postulate the problem of finding its solution in the form of discrete travelling waves. This allows us to study a scalar nonlinear differential-difference equation with two delays instead of the original system. We define a limit object which represents a relay equation with two delays by passing the large parameter to infinity. Using this construction and the step-by-step method, we show that there are six cases for restrictions on the parameters. In each case there exists a unique periodic solution to the relay equation with the initial function from a suitable function class. Using the Poincar\u00e9 operator and the Schauder principle, we prove the existence of relaxation periodic solutions of a singularly perturbed equation with two delays. We find the asymptotics of this solution and prove that the solution is close to the solution of the relay equation. The uniqueness and stability of the solutions of the differential-difference equation with two delays follow from the exponential bound on the Fr\u00e9chet derivative of the Poincar\u00e9 operator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0146411617070379", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136763", 
        "issn": [
          "0146-4116", 
          "1558-108X"
        ], 
        "name": "Automatic Control and Computer Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Relaxation Cycles in a Model of Synaptically Interacting Oscillators", 
    "pagination": "783-797", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd4540902b1391c3f1876ca8adaaf7cc1fc727ee89afa709fcc9b75164124383"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0146411617070379"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101073968"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0146411617070379", 
      "https://app.dimensions.ai/details/publication/pub.1101073968"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103/S0146411617070379"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070379'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070379'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070379'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070379'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0146411617070379 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndb72e990d93a4d45adbce96d7e0e4a3d
4 schema:citation sg:pub.10.1007/978-3-540-31544-5_2
5 sg:pub.10.1007/bf00169564
6 sg:pub.10.1007/bf00198772
7 sg:pub.10.1134/s0012266111070020
8 sg:pub.10.1134/s0012266111120019
9 sg:pub.10.1134/s0012266112020012
10 sg:pub.10.1134/s0012266113100017
11 sg:pub.10.1134/s0965542510120031
12 sg:pub.10.1134/s0965542512050090
13 https://doi.org/10.1016/s0006-3495(61)86902-6
14 https://doi.org/10.1070/im2013v077n02abeh002636
15 https://doi.org/10.1070/rm2015v070n03abeh004951
16 https://doi.org/10.1111/j.1749-6632.1948.tb39854.x
17 schema:datePublished 2017-12
18 schema:datePublishedReg 2017-12-01
19 schema:description We study the mathematical model of a circular neural network with synaptic interaction between the elements. The model is a system of scalar nonlinear differential-difference equations, the right parts of which depend on large parameters. The unknown functions included in the system characterize the membrane potentials of the neurons. The search for relaxation cycles within the system of equations is of interest. Thus, we postulate the problem of finding its solution in the form of discrete travelling waves. This allows us to study a scalar nonlinear differential-difference equation with two delays instead of the original system. We define a limit object which represents a relay equation with two delays by passing the large parameter to infinity. Using this construction and the step-by-step method, we show that there are six cases for restrictions on the parameters. In each case there exists a unique periodic solution to the relay equation with the initial function from a suitable function class. Using the Poincaré operator and the Schauder principle, we prove the existence of relaxation periodic solutions of a singularly perturbed equation with two delays. We find the asymptotics of this solution and prove that the solution is close to the solution of the relay equation. The uniqueness and stability of the solutions of the differential-difference equation with two delays follow from the exponential bound on the Fréchet derivative of the Poincaré operator.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N14746790739449f6973c7add56f64a8a
24 N8fc6ae3126184b5d8dfb29582a9543a9
25 sg:journal.1136763
26 schema:name Relaxation Cycles in a Model of Synaptically Interacting Oscillators
27 schema:pagination 783-797
28 schema:productId N89a9d7ce46fd4cdb8bd38554f2d1ca3d
29 Nc6df1c726fbf44468f4848b4352fabf8
30 Nd837f2116c1a489ab3e07ce77783928e
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101073968
32 https://doi.org/10.3103/s0146411617070379
33 schema:sdDatePublished 2019-04-11T01:53
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Ne7ba9609b2e6409f8305da63291d70f3
36 schema:url http://link.springer.com/10.3103/S0146411617070379
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N14746790739449f6973c7add56f64a8a schema:issueNumber 7
41 rdf:type schema:PublicationIssue
42 N89a9d7ce46fd4cdb8bd38554f2d1ca3d schema:name doi
43 schema:value 10.3103/s0146411617070379
44 rdf:type schema:PropertyValue
45 N8fc6ae3126184b5d8dfb29582a9543a9 schema:volumeNumber 51
46 rdf:type schema:PublicationVolume
47 Nc6df1c726fbf44468f4848b4352fabf8 schema:name dimensions_id
48 schema:value pub.1101073968
49 rdf:type schema:PropertyValue
50 Nd837f2116c1a489ab3e07ce77783928e schema:name readcube_id
51 schema:value dd4540902b1391c3f1876ca8adaaf7cc1fc727ee89afa709fcc9b75164124383
52 rdf:type schema:PropertyValue
53 Ndb72e990d93a4d45adbce96d7e0e4a3d rdf:first sg:person.014230770702.44
54 rdf:rest rdf:nil
55 Ne7ba9609b2e6409f8305da63291d70f3 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1136763 schema:issn 0146-4116
64 1558-108X
65 schema:name Automatic Control and Computer Sciences
66 rdf:type schema:Periodical
67 sg:person.014230770702.44 schema:affiliation https://www.grid.ac/institutes/grid.465407.4
68 schema:familyName Preobrazhenskaia
69 schema:givenName M. M.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230770702.44
71 rdf:type schema:Person
72 sg:pub.10.1007/978-3-540-31544-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037921067
73 https://doi.org/10.1007/978-3-540-31544-5_2
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf00169564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019702404
76 https://doi.org/10.1007/bf00169564
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf00198772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007511494
79 https://doi.org/10.1007/bf00198772
80 rdf:type schema:CreativeWork
81 sg:pub.10.1134/s0012266111070020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
82 https://doi.org/10.1134/s0012266111070020
83 rdf:type schema:CreativeWork
84 sg:pub.10.1134/s0012266111120019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
85 https://doi.org/10.1134/s0012266111120019
86 rdf:type schema:CreativeWork
87 sg:pub.10.1134/s0012266112020012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649782
88 https://doi.org/10.1134/s0012266112020012
89 rdf:type schema:CreativeWork
90 sg:pub.10.1134/s0012266113100017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050275506
91 https://doi.org/10.1134/s0012266113100017
92 rdf:type schema:CreativeWork
93 sg:pub.10.1134/s0965542510120031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019214202
94 https://doi.org/10.1134/s0965542510120031
95 rdf:type schema:CreativeWork
96 sg:pub.10.1134/s0965542512050090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035216242
97 https://doi.org/10.1134/s0965542512050090
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0006-3495(61)86902-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039086367
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1070/im2013v077n02abeh002636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058168686
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1070/rm2015v070n03abeh004951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198497
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1111/j.1749-6632.1948.tb39854.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028759908
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.465407.4 schema:alternateName Scientific Center
108 schema:name Demidov Yaroslavl State University, 150003, Yaroslavl, Russia
109 Scientific Center in Chernogolovka RAS, 142432, Chernogolovka, Moscow oblast, Russia
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...