Mathematical Model of Nicholson’s Experiment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

S. D. Glyzin

ABSTRACT

Considered is a mathematical model of insects population dynamics and an attempt is made to explain classical experimental results of Nicholson based on it. In the first section of the paper Nicholson’s experiment is described and dynamic equations for its modeling are chosen. A priori estimates for model parameters can be made more precise by means of local analysis of the dynamical system, that is carried out in the second section. For parameter values found there stability loss of the equilibrium of the problem leads to the bifurcation of stable two-dimensional torus. Numerical simulations based on the estimates from the second section allows to explain classical Nicholson’s experiment, which detailed theoretical rationale is given in the last section. There for an attractor of the system the largest Lyapunov exponent is computed. The nature of change of this exponent allows to additionally narrow the area of model parameters search. Justification of this experiment was made possible only due to combination of analytical and numerical methods in studying of equations of insects population dynamics. At the same time, the analytical approach made it possible to perform numerical analysis in a rather narrow region of the parameter space. It is not possible to get into this area, based only on general considerations. More... »

PAGES

736-752

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0146411617070331

DOI

http://dx.doi.org/10.3103/s0146411617070331

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101073966


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scientific Center", 
          "id": "https://www.grid.ac/institutes/grid.465407.4", 
          "name": [
            "Demidov Yaroslavl State University, 150003, Yaroslavl, Russia", 
            "Scientific Center in Chernogolovka RAS, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glyzin", 
        "givenName": "S. D.", 
        "id": "sg:person.014102163323.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102163323.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1071/zo9540009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009033192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6374-6_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145267", 
          "https://doi.org/10.1007/978-1-4612-6374-6_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10625-005-0159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032633115", 
          "https://doi.org/10.1007/s10625-005-0159-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10625-005-0159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032633115", 
          "https://doi.org/10.1007/s10625-005-0159-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1946.0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037688396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044255212", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255212", 
          "https://doi.org/10.1007/978-1-4612-1140-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255212", 
          "https://doi.org/10.1007/978-1-4612-1140-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/sqb.1957.022.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060403253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1931333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069655785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070364527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18255/1818-1015-2012-5-18-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107654110"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Considered is a mathematical model of insects population dynamics and an attempt is made to explain classical experimental results of Nicholson based on it. In the first section of the paper Nicholson\u2019s experiment is described and dynamic equations for its modeling are chosen. A priori estimates for model parameters can be made more precise by means of local analysis of the dynamical system, that is carried out in the second section. For parameter values found there stability loss of the equilibrium of the problem leads to the bifurcation of stable two-dimensional torus. Numerical simulations based on the estimates from the second section allows to explain classical Nicholson\u2019s experiment, which detailed theoretical rationale is given in the last section. There for an attractor of the system the largest Lyapunov exponent is computed. The nature of change of this exponent allows to additionally narrow the area of model parameters search. Justification of this experiment was made possible only due to combination of analytical and numerical methods in studying of equations of insects population dynamics. At the same time, the analytical approach made it possible to perform numerical analysis in a rather narrow region of the parameter space. It is not possible to get into this area, based only on general considerations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0146411617070331", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136763", 
        "issn": [
          "0146-4116", 
          "1558-108X"
        ], 
        "name": "Automatic Control and Computer Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Mathematical Model of Nicholson\u2019s Experiment", 
    "pagination": "736-752", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d341cc63f5015d9a403d6ae58cdbcbbfc6a3813eca62c866ee2e55b041a72829"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0146411617070331"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101073966"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0146411617070331", 
      "https://app.dimensions.ai/details/publication/pub.1101073966"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103/S0146411617070331"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070331'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070331'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070331'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411617070331'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0146411617070331 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb28fb166be96410f983327e163f2b346
4 schema:citation sg:pub.10.1007/978-1-4612-1140-2
5 sg:pub.10.1007/978-1-4612-6374-6_23
6 sg:pub.10.1007/s10625-005-0159-5
7 https://app.dimensions.ai/details/publication/pub.1044255212
8 https://doi.org/10.1071/zo9540009
9 https://doi.org/10.1098/rspb.1946.0004
10 https://doi.org/10.1101/sqb.1957.022.01.017
11 https://doi.org/10.18255/1818-1015-2012-5-18-34
12 https://doi.org/10.2307/1931333
13 https://doi.org/10.2307/3535
14 schema:datePublished 2017-12
15 schema:datePublishedReg 2017-12-01
16 schema:description Considered is a mathematical model of insects population dynamics and an attempt is made to explain classical experimental results of Nicholson based on it. In the first section of the paper Nicholson’s experiment is described and dynamic equations for its modeling are chosen. A priori estimates for model parameters can be made more precise by means of local analysis of the dynamical system, that is carried out in the second section. For parameter values found there stability loss of the equilibrium of the problem leads to the bifurcation of stable two-dimensional torus. Numerical simulations based on the estimates from the second section allows to explain classical Nicholson’s experiment, which detailed theoretical rationale is given in the last section. There for an attractor of the system the largest Lyapunov exponent is computed. The nature of change of this exponent allows to additionally narrow the area of model parameters search. Justification of this experiment was made possible only due to combination of analytical and numerical methods in studying of equations of insects population dynamics. At the same time, the analytical approach made it possible to perform numerical analysis in a rather narrow region of the parameter space. It is not possible to get into this area, based only on general considerations.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N8050c3839e22477bbe0856a749e5a544
21 Nf955082fd4904714aaddd9eb2e6b500a
22 sg:journal.1136763
23 schema:name Mathematical Model of Nicholson’s Experiment
24 schema:pagination 736-752
25 schema:productId N9ef1a9d6a0d24c97b15e0b0968a47425
26 Nc0c06492f24443f793d253a21ab2c308
27 Nf9b7c9fff277413589f222b459d4da6b
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101073966
29 https://doi.org/10.3103/s0146411617070331
30 schema:sdDatePublished 2019-04-10T21:54
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N7d498ab82ae34c0da9560cec39845325
33 schema:url http://link.springer.com/10.3103/S0146411617070331
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N7d498ab82ae34c0da9560cec39845325 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N8050c3839e22477bbe0856a749e5a544 schema:volumeNumber 51
40 rdf:type schema:PublicationVolume
41 N9ef1a9d6a0d24c97b15e0b0968a47425 schema:name doi
42 schema:value 10.3103/s0146411617070331
43 rdf:type schema:PropertyValue
44 Nb28fb166be96410f983327e163f2b346 rdf:first sg:person.014102163323.02
45 rdf:rest rdf:nil
46 Nc0c06492f24443f793d253a21ab2c308 schema:name dimensions_id
47 schema:value pub.1101073966
48 rdf:type schema:PropertyValue
49 Nf955082fd4904714aaddd9eb2e6b500a schema:issueNumber 7
50 rdf:type schema:PublicationIssue
51 Nf9b7c9fff277413589f222b459d4da6b schema:name readcube_id
52 schema:value d341cc63f5015d9a403d6ae58cdbcbbfc6a3813eca62c866ee2e55b041a72829
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
58 schema:name Applied Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136763 schema:issn 0146-4116
61 1558-108X
62 schema:name Automatic Control and Computer Sciences
63 rdf:type schema:Periodical
64 sg:person.014102163323.02 schema:affiliation https://www.grid.ac/institutes/grid.465407.4
65 schema:familyName Glyzin
66 schema:givenName S. D.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102163323.02
68 rdf:type schema:Person
69 sg:pub.10.1007/978-1-4612-1140-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255212
70 https://doi.org/10.1007/978-1-4612-1140-2
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/978-1-4612-6374-6_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028145267
73 https://doi.org/10.1007/978-1-4612-6374-6_23
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/s10625-005-0159-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032633115
76 https://doi.org/10.1007/s10625-005-0159-5
77 rdf:type schema:CreativeWork
78 https://app.dimensions.ai/details/publication/pub.1044255212 schema:CreativeWork
79 https://doi.org/10.1071/zo9540009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009033192
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1098/rspb.1946.0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037688396
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1101/sqb.1957.022.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060403253
84 rdf:type schema:CreativeWork
85 https://doi.org/10.18255/1818-1015-2012-5-18-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107654110
86 rdf:type schema:CreativeWork
87 https://doi.org/10.2307/1931333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069655785
88 rdf:type schema:CreativeWork
89 https://doi.org/10.2307/3535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070364527
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.465407.4 schema:alternateName Scientific Center
92 schema:name Demidov Yaroslavl State University, 150003, Yaroslavl, Russia
93 Scientific Center in Chernogolovka RAS, 142432, Chernogolovka, Moscow oblast, Russia
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...