Asymptotics of eigenvalues of the first boundary-value problem for singularly perturbed second-order differential equation with turning points View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

S. A. Kaschenko

ABSTRACT

We consider a second-order linear differential equation of with a small factor at the highest derivative. We study the asymptotic behavior of eigenvalues of the first boundary-value problem (the Dirichlet problem) under the assumption that turning points (points where the coefficient at the first derivative equals to zero) exist. It has been shown that only the behavior of coefficients of the equation in a small neighborhood of the turning points is essential. The main result is a theorem on the limit values of the eigenvalues of the first boundary-value problem. More... »

PAGES

636-656

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0146411616070105

DOI

http://dx.doi.org/10.3103/s0146411616070105

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054012523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Demidov Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia", 
            "National Research Nuclear University MEPhI, sh. Kashirskoe 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaschenko", 
        "givenName": "S. A.", 
        "id": "sg:person.011337150201.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337150201.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-3303-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028128485", 
          "https://doi.org/10.1007/978-1-4684-3303-6_1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "We consider a second-order linear differential equation of with a small factor at the highest derivative. We study the asymptotic behavior of eigenvalues of the first boundary-value problem (the Dirichlet problem) under the assumption that turning points (points where the coefficient at the first derivative equals to zero) exist. It has been shown that only the behavior of coefficients of the equation in a small neighborhood of the turning points is essential. The main result is a theorem on the limit values of the eigenvalues of the first boundary-value problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0146411616070105", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136763", 
        "issn": [
          "0146-4116", 
          "1558-108X"
        ], 
        "name": "Automatic Control and Computer Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Asymptotics of eigenvalues of the first boundary-value problem for singularly perturbed second-order differential equation with turning points", 
    "pagination": "636-656", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c5c927c387d2e64637bed97af014241687bdd35f6a27e14f031751b478e42754"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0146411616070105"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054012523"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0146411616070105", 
      "https://app.dimensions.ai/details/publication/pub.1054012523"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS0146411616070105"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411616070105'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411616070105'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411616070105'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411616070105'


 

This table displays all metadata directly associated to this object as RDF triples.

66 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0146411616070105 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8182cb58418f47769c3c00793531d3d5
4 schema:citation sg:pub.10.1007/978-1-4684-3303-6_1
5 schema:datePublished 2016-12
6 schema:datePublishedReg 2016-12-01
7 schema:description We consider a second-order linear differential equation of with a small factor at the highest derivative. We study the asymptotic behavior of eigenvalues of the first boundary-value problem (the Dirichlet problem) under the assumption that turning points (points where the coefficient at the first derivative equals to zero) exist. It has been shown that only the behavior of coefficients of the equation in a small neighborhood of the turning points is essential. The main result is a theorem on the limit values of the eigenvalues of the first boundary-value problem.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5da26e204e764e848821b23a55ff3ce7
12 Nad291fdcf156455f9af49b0ba6edc95f
13 sg:journal.1136763
14 schema:name Asymptotics of eigenvalues of the first boundary-value problem for singularly perturbed second-order differential equation with turning points
15 schema:pagination 636-656
16 schema:productId N2627f84e80694afdaa84557480e2078e
17 N510a5809f5f94d6a925ed75dc5f16da7
18 N953537aa116f43eb873502b51755ddf3
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054012523
20 https://doi.org/10.3103/s0146411616070105
21 schema:sdDatePublished 2019-04-11T13:09
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nfc9ccf044e6b4aaf8560710b1e7295ea
24 schema:url https://link.springer.com/10.3103%2FS0146411616070105
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N2627f84e80694afdaa84557480e2078e schema:name dimensions_id
29 schema:value pub.1054012523
30 rdf:type schema:PropertyValue
31 N510a5809f5f94d6a925ed75dc5f16da7 schema:name readcube_id
32 schema:value c5c927c387d2e64637bed97af014241687bdd35f6a27e14f031751b478e42754
33 rdf:type schema:PropertyValue
34 N5da26e204e764e848821b23a55ff3ce7 schema:issueNumber 7
35 rdf:type schema:PublicationIssue
36 N8182cb58418f47769c3c00793531d3d5 rdf:first sg:person.011337150201.53
37 rdf:rest rdf:nil
38 N953537aa116f43eb873502b51755ddf3 schema:name doi
39 schema:value 10.3103/s0146411616070105
40 rdf:type schema:PropertyValue
41 Nad291fdcf156455f9af49b0ba6edc95f schema:volumeNumber 50
42 rdf:type schema:PublicationVolume
43 Nfc9ccf044e6b4aaf8560710b1e7295ea schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
46 schema:name Mathematical Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
49 schema:name Pure Mathematics
50 rdf:type schema:DefinedTerm
51 sg:journal.1136763 schema:issn 0146-4116
52 1558-108X
53 schema:name Automatic Control and Computer Sciences
54 rdf:type schema:Periodical
55 sg:person.011337150201.53 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
56 schema:familyName Kaschenko
57 schema:givenName S. A.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337150201.53
59 rdf:type schema:Person
60 sg:pub.10.1007/978-1-4684-3303-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128485
61 https://doi.org/10.1007/978-1-4684-3303-6_1
62 rdf:type schema:CreativeWork
63 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
64 schema:name Demidov Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia
65 National Research Nuclear University MEPhI, sh. Kashirskoe 31, 115409, Moscow, Russia
66 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...