Asymptotics of eigenvalues of the first boundary-value problem for singularly perturbed second-order differential equation with turning points View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

S. A. Kaschenko

ABSTRACT

We consider a second-order linear differential equation of with a small factor at the highest derivative. We study the asymptotic behavior of eigenvalues of the first boundary-value problem (the Dirichlet problem) under the assumption that turning points (points where the coefficient at the first derivative equals to zero) exist. It has been shown that only the behavior of coefficients of the equation in a small neighborhood of the turning points is essential. The main result is a theorem on the limit values of the eigenvalues of the first boundary-value problem. More... »

PAGES

636-656

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0146411616070105

DOI

http://dx.doi.org/10.3103/s0146411616070105

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054012523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Demidov Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia", 
            "National Research Nuclear University MEPhI, sh. Kashirskoe 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaschenko", 
        "givenName": "S. A.", 
        "id": "sg:person.011337150201.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337150201.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-3303-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028128485", 
          "https://doi.org/10.1007/978-1-4684-3303-6_1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "We consider a second-order linear differential equation of with a small factor at the highest derivative. We study the asymptotic behavior of eigenvalues of the first boundary-value problem (the Dirichlet problem) under the assumption that turning points (points where the coefficient at the first derivative equals to zero) exist. It has been shown that only the behavior of coefficients of the equation in a small neighborhood of the turning points is essential. The main result is a theorem on the limit values of the eigenvalues of the first boundary-value problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0146411616070105", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136763", 
        "issn": [
          "0146-4116", 
          "1558-108X"
        ], 
        "name": "Automatic Control and Computer Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Asymptotics of eigenvalues of the first boundary-value problem for singularly perturbed second-order differential equation with turning points", 
    "pagination": "636-656", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c5c927c387d2e64637bed97af014241687bdd35f6a27e14f031751b478e42754"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0146411616070105"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054012523"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0146411616070105", 
      "https://app.dimensions.ai/details/publication/pub.1054012523"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS0146411616070105"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411616070105'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411616070105'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411616070105'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411616070105'


 

This table displays all metadata directly associated to this object as RDF triples.

66 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0146411616070105 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd7929fe9039645c5ba7644f6d3ce8b59
4 schema:citation sg:pub.10.1007/978-1-4684-3303-6_1
5 schema:datePublished 2016-12
6 schema:datePublishedReg 2016-12-01
7 schema:description We consider a second-order linear differential equation of with a small factor at the highest derivative. We study the asymptotic behavior of eigenvalues of the first boundary-value problem (the Dirichlet problem) under the assumption that turning points (points where the coefficient at the first derivative equals to zero) exist. It has been shown that only the behavior of coefficients of the equation in a small neighborhood of the turning points is essential. The main result is a theorem on the limit values of the eigenvalues of the first boundary-value problem.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N40acc7a64b3f44888d49b5b8e60bad70
12 N44523e8fdfae4b18b41a9ec1489ac7c3
13 sg:journal.1136763
14 schema:name Asymptotics of eigenvalues of the first boundary-value problem for singularly perturbed second-order differential equation with turning points
15 schema:pagination 636-656
16 schema:productId N08e78941395a459eb387ca7bee415866
17 N7facc65900a644b4bd660905175863f6
18 Nfa1b2683f90f4e459e97054d8906deb5
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054012523
20 https://doi.org/10.3103/s0146411616070105
21 schema:sdDatePublished 2019-04-11T13:09
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nb6093214b8f74fe8865e14346224068f
24 schema:url https://link.springer.com/10.3103%2FS0146411616070105
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N08e78941395a459eb387ca7bee415866 schema:name doi
29 schema:value 10.3103/s0146411616070105
30 rdf:type schema:PropertyValue
31 N40acc7a64b3f44888d49b5b8e60bad70 schema:issueNumber 7
32 rdf:type schema:PublicationIssue
33 N44523e8fdfae4b18b41a9ec1489ac7c3 schema:volumeNumber 50
34 rdf:type schema:PublicationVolume
35 N7facc65900a644b4bd660905175863f6 schema:name dimensions_id
36 schema:value pub.1054012523
37 rdf:type schema:PropertyValue
38 Nb6093214b8f74fe8865e14346224068f schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Nd7929fe9039645c5ba7644f6d3ce8b59 rdf:first sg:person.011337150201.53
41 rdf:rest rdf:nil
42 Nfa1b2683f90f4e459e97054d8906deb5 schema:name readcube_id
43 schema:value c5c927c387d2e64637bed97af014241687bdd35f6a27e14f031751b478e42754
44 rdf:type schema:PropertyValue
45 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
46 schema:name Mathematical Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
49 schema:name Pure Mathematics
50 rdf:type schema:DefinedTerm
51 sg:journal.1136763 schema:issn 0146-4116
52 1558-108X
53 schema:name Automatic Control and Computer Sciences
54 rdf:type schema:Periodical
55 sg:person.011337150201.53 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
56 schema:familyName Kaschenko
57 schema:givenName S. A.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337150201.53
59 rdf:type schema:Person
60 sg:pub.10.1007/978-1-4684-3303-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128485
61 https://doi.org/10.1007/978-1-4684-3303-6_1
62 rdf:type schema:CreativeWork
63 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
64 schema:name Demidov Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia
65 National Research Nuclear University MEPhI, sh. Kashirskoe 31, 115409, Moscow, Russia
66 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...