Singularly perturbed boundary value problem with multizonal interior transitional layer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

V. F. Butuzov

ABSTRACT

The paper discusses a two-point boundary value problem for a singularly perturbed ordinary second-order differential equation in the case when the degenerate equation has three nonintersecting roots from which one root is twofold and two roots are onefold. It is proved that the problem has a solution with transition from the twofold root of the degenerate equation to the onefold root in the neighborhood of a point of the interval for sufficiently small parameter values. An asymptotic expansion of this solution is constructed. It is distinguished from the known expansion when all the roots of the degenerate equation are onefold; in particular, the transitional layer is multizonal. More... »

PAGES

493-507

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0146411615070044

DOI

http://dx.doi.org/10.3103/s0146411615070044

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028053505


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butuzov", 
        "givenName": "V. F.", 
        "id": "sg:person.012374470655.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012374470655.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0001434613070067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009709126", 
          "https://doi.org/10.1134/s0001434613070067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542511010064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044230436", 
          "https://doi.org/10.1134/s0965542511010064"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "The paper discusses a two-point boundary value problem for a singularly perturbed ordinary second-order differential equation in the case when the degenerate equation has three nonintersecting roots from which one root is twofold and two roots are onefold. It is proved that the problem has a solution with transition from the twofold root of the degenerate equation to the onefold root in the neighborhood of a point of the interval for sufficiently small parameter values. An asymptotic expansion of this solution is constructed. It is distinguished from the known expansion when all the roots of the degenerate equation are onefold; in particular, the transitional layer is multizonal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s0146411615070044", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136763", 
        "issn": [
          "0146-4116", 
          "1558-108X"
        ], 
        "name": "Automatic Control and Computer Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Singularly perturbed boundary value problem with multizonal interior transitional layer", 
    "pagination": "493-507", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85a3d1e7cecb43e1497208ef14718ad68f0953c5802b313a1a9af3f5793c7d53"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0146411615070044"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028053505"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0146411615070044", 
      "https://app.dimensions.ai/details/publication/pub.1028053505"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103/S0146411615070044"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0146411615070044'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0146411615070044'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0146411615070044'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0146411615070044'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0146411615070044 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author Nd1278ed3c2574022a8d8e01c36f05f3d
4 schema:citation sg:pub.10.1134/s0001434613070067
5 sg:pub.10.1134/s0965542511010064
6 schema:datePublished 2015-12
7 schema:datePublishedReg 2015-12-01
8 schema:description The paper discusses a two-point boundary value problem for a singularly perturbed ordinary second-order differential equation in the case when the degenerate equation has three nonintersecting roots from which one root is twofold and two roots are onefold. It is proved that the problem has a solution with transition from the twofold root of the degenerate equation to the onefold root in the neighborhood of a point of the interval for sufficiently small parameter values. An asymptotic expansion of this solution is constructed. It is distinguished from the known expansion when all the roots of the degenerate equation are onefold; in particular, the transitional layer is multizonal.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N92383379549c4ba2bc74243af054036e
13 Nfec71c36b0a94ef29cbf6c7509022e8c
14 sg:journal.1136763
15 schema:name Singularly perturbed boundary value problem with multizonal interior transitional layer
16 schema:pagination 493-507
17 schema:productId N10c60ba5fb37495e9338054c75f5946e
18 N4905ff5421f541e3907085967f056fa8
19 N8072e3d097944dfa9285c8b365806cf0
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028053505
21 https://doi.org/10.3103/s0146411615070044
22 schema:sdDatePublished 2019-04-10T21:35
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Na6ba180d92e44e7fba6514447fa0495b
25 schema:url http://link.springer.com/10.3103/S0146411615070044
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N10c60ba5fb37495e9338054c75f5946e schema:name doi
30 schema:value 10.3103/s0146411615070044
31 rdf:type schema:PropertyValue
32 N4905ff5421f541e3907085967f056fa8 schema:name readcube_id
33 schema:value 85a3d1e7cecb43e1497208ef14718ad68f0953c5802b313a1a9af3f5793c7d53
34 rdf:type schema:PropertyValue
35 N8072e3d097944dfa9285c8b365806cf0 schema:name dimensions_id
36 schema:value pub.1028053505
37 rdf:type schema:PropertyValue
38 N92383379549c4ba2bc74243af054036e schema:issueNumber 7
39 rdf:type schema:PublicationIssue
40 Na6ba180d92e44e7fba6514447fa0495b schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nd1278ed3c2574022a8d8e01c36f05f3d rdf:first sg:person.012374470655.20
43 rdf:rest rdf:nil
44 Nfec71c36b0a94ef29cbf6c7509022e8c schema:volumeNumber 49
45 rdf:type schema:PublicationVolume
46 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
47 schema:name Biological Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
50 schema:name Plant Biology
51 rdf:type schema:DefinedTerm
52 sg:journal.1136763 schema:issn 0146-4116
53 1558-108X
54 schema:name Automatic Control and Computer Sciences
55 rdf:type schema:Periodical
56 sg:person.012374470655.20 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
57 schema:familyName Butuzov
58 schema:givenName V. F.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012374470655.20
60 rdf:type schema:Person
61 sg:pub.10.1134/s0001434613070067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009709126
62 https://doi.org/10.1134/s0001434613070067
63 rdf:type schema:CreativeWork
64 sg:pub.10.1134/s0965542511010064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044230436
65 https://doi.org/10.1134/s0965542511010064
66 rdf:type schema:CreativeWork
67 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
68 schema:name Moscow State University, 119991, Moscow, Russia
69 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...