Relativistic Reductions in Precision Measurements of the Earth’s Gravitational Field Using Low-Orbit Spacecraft View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

V. K. Milyukov, M. V. Sazhin, V. N. Sementsov, H.-Chi. Yeh, C. Xue

ABSTRACT

The advancement of space technology opens new perspectives in developing high-resolution models of the Earth’s gravitational field. The use of a precision laser interferometric system requires taking relativistic effects in the inter-satellite ranging within the satellite constellation into account. The main quantity measured by the laser system is the phase incursion of the laser beam when passing a double one-way range between the satellites. A solution for the relativistic phase is obtained that considers not only the usual Shapiro term but also the contribution of the quadrupole term to distributions of the Earth’s mass, the Earth’s spin, and tidal gravitational fields caused by the gravitational potentials of the outer bodies of the Solar System. Relativistic reduction terms are estimated at the accuracy level of ∼1 nm, which fully satisfies the accuracy of precision measurements in the two-spacecraft formation. It will be necessary to take the relativistic effects of the next order of smallness into account in the next-generation gravitational twin missions. More... »

PAGES

197-204

References to SciGraph publications

  • 1998-02. Fabry-Perot cavity in the field of a gravitational wave in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2002-05. GOCE: The Earth Gravity Field by Space Gradiometry in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2018-12-28. Next Generation Space Gravimetry: Scientific Tasks, Concepts, and Realization in ASTRONOMY REPORTS
  • 2010-02-26. Future Mission Design Options for Spatio-Temporal Geopotential Recovery in GRAVITY, GEOID AND EARTH OBSERVATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s0027134919020139

    DOI

    http://dx.doi.org/10.3103/s0027134919020139

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1117057530


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sternberg Astronomical Institute, Moscow State University, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Sternberg Astronomical Institute, Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Milyukov", 
            "givenName": "V. K.", 
            "id": "sg:person.016206246417.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016206246417.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sternberg Astronomical Institute, Moscow State University, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Sternberg Astronomical Institute, Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sazhin", 
            "givenName": "M. V.", 
            "id": "sg:person.013752036325.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013752036325.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sternberg Astronomical Institute, Moscow State University, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Sternberg Astronomical Institute, Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sementsov", 
            "givenName": "V. N.", 
            "id": "sg:person.012155740257.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155740257.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "Sun Yat-sen University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yeh", 
            "givenName": "H.-Chi.", 
            "id": "sg:person.0661025146.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661025146.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "Sun Yat-sen University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xue", 
            "givenName": "C.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s1063772918120090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110933702", 
              "https://doi.org/10.1134/s1063772918120090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10634-7_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013595530", 
              "https://doi.org/10.1007/978-3-642-10634-7_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020104624752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027456678", 
              "https://doi.org/10.1023/a:1020104624752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.558447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015733281", 
              "https://doi.org/10.1134/1.558447"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "The advancement of space technology opens new perspectives in developing high-resolution models of the Earth\u2019s gravitational field. The use of a precision laser interferometric system requires taking relativistic effects in the inter-satellite ranging within the satellite constellation into account. The main quantity measured by the laser system is the phase incursion of the laser beam when passing a double one-way range between the satellites. A solution for the relativistic phase is obtained that considers not only the usual Shapiro term but also the contribution of the quadrupole term to distributions of the Earth\u2019s mass, the Earth\u2019s spin, and tidal gravitational fields caused by the gravitational potentials of the outer bodies of the Solar System. Relativistic reduction terms are estimated at the accuracy level of \u223c1 nm, which fully satisfies the accuracy of precision measurements in the two-spacecraft formation. It will be necessary to take the relativistic effects of the next order of smallness into account in the next-generation gravitational twin missions.", 
        "genre": "article", 
        "id": "sg:pub.10.3103/s0027134919020139", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136747", 
            "issn": [
              "0027-1349", 
              "1934-8460"
            ], 
            "name": "Moscow University Physics Bulletin", 
            "publisher": "Allerton Press", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "74"
          }
        ], 
        "keywords": [
          "gravitational field", 
          "Earth's gravitational field", 
          "precision measurements", 
          "relativistic effects", 
          "tidal gravitational field", 
          "one-way range", 
          "laser interferometric system", 
          "low-orbit spacecraft", 
          "laser system", 
          "laser beam", 
          "relativistic phase", 
          "phase incursion", 
          "Earth masses", 
          "relativistic reduction", 
          "gravitational potential", 
          "interferometric system", 
          "quadrupole term", 
          "solar system", 
          "twin mission", 
          "inter-satellite ranging", 
          "Earth's spin", 
          "spin", 
          "main quantities", 
          "next order", 
          "outer body", 
          "two-spacecraft formation", 
          "space technology", 
          "field", 
          "beam", 
          "spacecraft", 
          "measurements", 
          "mass", 
          "satellite constellation", 
          "satellite", 
          "reduction term", 
          "smallness", 
          "high-resolution model", 
          "mission", 
          "ranging", 
          "accuracy level", 
          "phase", 
          "range", 
          "system", 
          "account", 
          "distribution", 
          "terms", 
          "new perspective", 
          "formation", 
          "contribution", 
          "effect", 
          "quantity", 
          "potential", 
          "order", 
          "technology", 
          "solution", 
          "accuracy", 
          "model", 
          "reduction", 
          "advancement", 
          "constellation", 
          "use", 
          "body", 
          "levels", 
          "perspective", 
          "incursion", 
          "precision laser interferometric system", 
          "usual Shapiro term", 
          "Shapiro term", 
          "Relativistic reduction terms", 
          "next-generation gravitational twin missions", 
          "gravitational twin missions"
        ], 
        "name": "Relativistic Reductions in Precision Measurements of the Earth\u2019s Gravitational Field Using Low-Orbit Spacecraft", 
        "pagination": "197-204", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1117057530"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s0027134919020139"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s0027134919020139", 
          "https://app.dimensions.ai/details/publication/pub.1117057530"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_830.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.3103/s0027134919020139"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0027134919020139'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0027134919020139'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0027134919020139'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0027134919020139'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      22 PREDICATES      101 URIs      89 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s0027134919020139 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Ne75f95d0f5c743a2ad76b9c1e4df377b
    4 schema:citation sg:pub.10.1007/978-3-642-10634-7_22
    5 sg:pub.10.1023/a:1020104624752
    6 sg:pub.10.1134/1.558447
    7 sg:pub.10.1134/s1063772918120090
    8 schema:datePublished 2019-03
    9 schema:datePublishedReg 2019-03-01
    10 schema:description The advancement of space technology opens new perspectives in developing high-resolution models of the Earth’s gravitational field. The use of a precision laser interferometric system requires taking relativistic effects in the inter-satellite ranging within the satellite constellation into account. The main quantity measured by the laser system is the phase incursion of the laser beam when passing a double one-way range between the satellites. A solution for the relativistic phase is obtained that considers not only the usual Shapiro term but also the contribution of the quadrupole term to distributions of the Earth’s mass, the Earth’s spin, and tidal gravitational fields caused by the gravitational potentials of the outer bodies of the Solar System. Relativistic reduction terms are estimated at the accuracy level of ∼1 nm, which fully satisfies the accuracy of precision measurements in the two-spacecraft formation. It will be necessary to take the relativistic effects of the next order of smallness into account in the next-generation gravitational twin missions.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Nafceae0c7e33443db0270fd76699beda
    15 Ne4190aa6cd914544a9e1698f5439c508
    16 sg:journal.1136747
    17 schema:keywords Earth masses
    18 Earth's gravitational field
    19 Earth's spin
    20 Relativistic reduction terms
    21 Shapiro term
    22 account
    23 accuracy
    24 accuracy level
    25 advancement
    26 beam
    27 body
    28 constellation
    29 contribution
    30 distribution
    31 effect
    32 field
    33 formation
    34 gravitational field
    35 gravitational potential
    36 gravitational twin missions
    37 high-resolution model
    38 incursion
    39 inter-satellite ranging
    40 interferometric system
    41 laser beam
    42 laser interferometric system
    43 laser system
    44 levels
    45 low-orbit spacecraft
    46 main quantities
    47 mass
    48 measurements
    49 mission
    50 model
    51 new perspective
    52 next order
    53 next-generation gravitational twin missions
    54 one-way range
    55 order
    56 outer body
    57 perspective
    58 phase
    59 phase incursion
    60 potential
    61 precision laser interferometric system
    62 precision measurements
    63 quadrupole term
    64 quantity
    65 range
    66 ranging
    67 reduction
    68 reduction term
    69 relativistic effects
    70 relativistic phase
    71 relativistic reduction
    72 satellite
    73 satellite constellation
    74 smallness
    75 solar system
    76 solution
    77 space technology
    78 spacecraft
    79 spin
    80 system
    81 technology
    82 terms
    83 tidal gravitational field
    84 twin mission
    85 two-spacecraft formation
    86 use
    87 usual Shapiro term
    88 schema:name Relativistic Reductions in Precision Measurements of the Earth’s Gravitational Field Using Low-Orbit Spacecraft
    89 schema:pagination 197-204
    90 schema:productId N5d89cc1540bd4a6db1018b81e3ad9774
    91 Nf5d0d5e5894b4b469d818d371430873e
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117057530
    93 https://doi.org/10.3103/s0027134919020139
    94 schema:sdDatePublished 2022-01-01T18:55
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher N1ff322b12d5d446d89312cff5d107786
    97 schema:url https://doi.org/10.3103/s0027134919020139
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N048c6a9a2dfb4107858f03926ec2ff44 rdf:first sg:person.013752036325.48
    102 rdf:rest N70a6fa159f4c47dea9aef55272840cbf
    103 N1ff322b12d5d446d89312cff5d107786 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 N2986043d6d5f424781b0e2d9d94a4ea2 rdf:first N2f0b80cb45ef4c4a94775b186ca81714
    106 rdf:rest rdf:nil
    107 N2f0b80cb45ef4c4a94775b186ca81714 schema:affiliation grid-institutes:grid.12981.33
    108 schema:familyName Xue
    109 schema:givenName C.
    110 rdf:type schema:Person
    111 N379b1a9aeae048a5942fd1f095b3d71c rdf:first sg:person.0661025146.19
    112 rdf:rest N2986043d6d5f424781b0e2d9d94a4ea2
    113 N5d89cc1540bd4a6db1018b81e3ad9774 schema:name dimensions_id
    114 schema:value pub.1117057530
    115 rdf:type schema:PropertyValue
    116 N70a6fa159f4c47dea9aef55272840cbf rdf:first sg:person.012155740257.49
    117 rdf:rest N379b1a9aeae048a5942fd1f095b3d71c
    118 Nafceae0c7e33443db0270fd76699beda schema:issueNumber 2
    119 rdf:type schema:PublicationIssue
    120 Ne4190aa6cd914544a9e1698f5439c508 schema:volumeNumber 74
    121 rdf:type schema:PublicationVolume
    122 Ne75f95d0f5c743a2ad76b9c1e4df377b rdf:first sg:person.016206246417.83
    123 rdf:rest N048c6a9a2dfb4107858f03926ec2ff44
    124 Nf5d0d5e5894b4b469d818d371430873e schema:name doi
    125 schema:value 10.3103/s0027134919020139
    126 rdf:type schema:PropertyValue
    127 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Physical Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Other Physical Sciences
    132 rdf:type schema:DefinedTerm
    133 sg:journal.1136747 schema:issn 0027-1349
    134 1934-8460
    135 schema:name Moscow University Physics Bulletin
    136 schema:publisher Allerton Press
    137 rdf:type schema:Periodical
    138 sg:person.012155740257.49 schema:affiliation grid-institutes:grid.14476.30
    139 schema:familyName Sementsov
    140 schema:givenName V. N.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155740257.49
    142 rdf:type schema:Person
    143 sg:person.013752036325.48 schema:affiliation grid-institutes:grid.14476.30
    144 schema:familyName Sazhin
    145 schema:givenName M. V.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013752036325.48
    147 rdf:type schema:Person
    148 sg:person.016206246417.83 schema:affiliation grid-institutes:grid.14476.30
    149 schema:familyName Milyukov
    150 schema:givenName V. K.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016206246417.83
    152 rdf:type schema:Person
    153 sg:person.0661025146.19 schema:affiliation grid-institutes:grid.12981.33
    154 schema:familyName Yeh
    155 schema:givenName H.-Chi.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661025146.19
    157 rdf:type schema:Person
    158 sg:pub.10.1007/978-3-642-10634-7_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013595530
    159 https://doi.org/10.1007/978-3-642-10634-7_22
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1023/a:1020104624752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027456678
    162 https://doi.org/10.1023/a:1020104624752
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1134/1.558447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015733281
    165 https://doi.org/10.1134/1.558447
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1134/s1063772918120090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110933702
    168 https://doi.org/10.1134/s1063772918120090
    169 rdf:type schema:CreativeWork
    170 grid-institutes:grid.12981.33 schema:alternateName Sun Yat-sen University, Guangzhou, China
    171 schema:name Sun Yat-sen University, Guangzhou, China
    172 rdf:type schema:Organization
    173 grid-institutes:grid.14476.30 schema:alternateName Sternberg Astronomical Institute, Moscow State University, 119991, Moscow, Russia
    174 schema:name Sternberg Astronomical Institute, Moscow State University, 119991, Moscow, Russia
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...