Resonant and Bifurcation Oscillations of the Rod with Regard to the Resistance Forces and Relaxation Properties of the Medium View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

A. V. Eremin, V. V. Zhukov, V. A. Kudinov, I. V. Kudinov

ABSTRACT

A mathematical model of elastic oscillations of a rod under the influence of an external harmonic load, taking into account the relaxation properties and forces of the medium resistance, has been developed. The derivation of the differential equation of the model is based on taking into account the time dependence of the stresses and strains in the formula of Hooke’s law, which, when presented in this way, coincides with the formula of the complicated Maxwell and Kelvin-Voigt models. The study of the model using numerical method showed that when the frequency of the natural oscillations of the rod coincides with the frequency of the external load oscillations (if the resistance of the medium and its relaxation properties are not taken into account), the amplitude of the oscillations (resonance) increases unlimited in time. When taking into account the resistance and relaxation properties of the medium at resonant frequencies, the amplitude of oscillations stabilizes on a value depending on the values of the resistance and relaxation coefficients. At frequencies close to resonant, bifurcation oscillations (beats) are observed, at which there is a periodic increase and decrease of the amplitude of oscillations. At frequencies substantially different from resonant ones, in the case of taking into account resistance forces and relaxation properties of materials, bifurcation oscillations are not observed. In this case, the amplitude of oscillations is stabilized in time at a value depending on the amplitude of oscillations of the external load, the resistance coefficient and the relaxation coefficients. More... »

PAGES

584-590

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s0025654418080125

DOI

http://dx.doi.org/10.3103/s0025654418080125

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1119995720


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.015401043035.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukov", 
        "givenName": "V. V.", 
        "id": "sg:person.013233227267.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233227267.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "I. V.", 
        "id": "sg:person.013117131562.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s0025654414050057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070973402", 
          "https://doi.org/10.3103/s0025654414050057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0025654417060103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101395172", 
          "https://doi.org/10.3103/s0025654417060103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00828333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015375581", 
          "https://doi.org/10.1007/bf00828333"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "A mathematical model of elastic oscillations of a rod under the influence of an external harmonic load, taking into account the relaxation properties and forces of the medium resistance, has been developed. The derivation of the differential equation of the model is based on taking into account the time dependence of the stresses and strains in the formula of Hooke\u2019s law, which, when presented in this way, coincides with the formula of the complicated Maxwell and Kelvin-Voigt models. The study of the model using numerical method showed that when the frequency of the natural oscillations of the rod coincides with the frequency of the external load oscillations (if the resistance of the medium and its relaxation properties are not taken into account), the amplitude of the oscillations (resonance) increases unlimited in time. When taking into account the resistance and relaxation properties of the medium at resonant frequencies, the amplitude of oscillations stabilizes on a value depending on the values of the resistance and relaxation coefficients. At frequencies close to resonant, bifurcation oscillations (beats) are observed, at which there is a periodic increase and decrease of the amplitude of oscillations. At frequencies substantially different from resonant ones, in the case of taking into account resistance forces and relaxation properties of materials, bifurcation oscillations are not observed. In this case, the amplitude of oscillations is stabilized in time at a value depending on the amplitude of oscillations of the external load, the resistance coefficient and the relaxation coefficients.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s0025654418080125", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8412342", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1135991", 
        "issn": [
          "0025-6544", 
          "1934-7936"
        ], 
        "name": "Mechanics of Solids", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "amplitude of oscillation", 
      "relaxation coefficient", 
      "external harmonic load", 
      "Kelvin-Voigt model", 
      "differential equations", 
      "mathematical model", 
      "elastic oscillations", 
      "numerical method", 
      "relaxation properties", 
      "resistance force", 
      "natural oscillations", 
      "resonant ones", 
      "Hooke's law", 
      "harmonic load", 
      "load oscillations", 
      "time dependence", 
      "oscillations", 
      "formula", 
      "resistance coefficient", 
      "equations", 
      "amplitude", 
      "model", 
      "Maxwell", 
      "law", 
      "coefficient", 
      "resonant frequency", 
      "derivation", 
      "properties", 
      "external load", 
      "account", 
      "force", 
      "dependence", 
      "frequency", 
      "rods", 
      "resonant", 
      "cases", 
      "values", 
      "medium resistance", 
      "one", 
      "medium", 
      "time", 
      "load", 
      "way", 
      "materials", 
      "influence", 
      "stress", 
      "periodic increases", 
      "regard", 
      "study", 
      "increase", 
      "resistance", 
      "decrease", 
      "method"
    ], 
    "name": "Resonant and Bifurcation Oscillations of the Rod with Regard to the Resistance Forces and Relaxation Properties of the Medium", 
    "pagination": "584-590", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1119995720"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s0025654418080125"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s0025654418080125", 
      "https://app.dimensions.ai/details/publication/pub.1119995720"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_786.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s0025654418080125"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s0025654418080125'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s0025654418080125'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s0025654418080125'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s0025654418080125'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      22 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s0025654418080125 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nca3d7d25126243129f70e98da0a4b1de
4 schema:citation sg:pub.10.1007/bf00828333
5 sg:pub.10.3103/s0025654414050057
6 sg:pub.10.3103/s0025654417060103
7 schema:datePublished 2018-09
8 schema:datePublishedReg 2018-09-01
9 schema:description A mathematical model of elastic oscillations of a rod under the influence of an external harmonic load, taking into account the relaxation properties and forces of the medium resistance, has been developed. The derivation of the differential equation of the model is based on taking into account the time dependence of the stresses and strains in the formula of Hooke’s law, which, when presented in this way, coincides with the formula of the complicated Maxwell and Kelvin-Voigt models. The study of the model using numerical method showed that when the frequency of the natural oscillations of the rod coincides with the frequency of the external load oscillations (if the resistance of the medium and its relaxation properties are not taken into account), the amplitude of the oscillations (resonance) increases unlimited in time. When taking into account the resistance and relaxation properties of the medium at resonant frequencies, the amplitude of oscillations stabilizes on a value depending on the values of the resistance and relaxation coefficients. At frequencies close to resonant, bifurcation oscillations (beats) are observed, at which there is a periodic increase and decrease of the amplitude of oscillations. At frequencies substantially different from resonant ones, in the case of taking into account resistance forces and relaxation properties of materials, bifurcation oscillations are not observed. In this case, the amplitude of oscillations is stabilized in time at a value depending on the amplitude of oscillations of the external load, the resistance coefficient and the relaxation coefficients.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N6b36891dee4c4e02ad619b457bb8a4e3
14 N8f3d6b73f39140d8ade37c19b969cb46
15 sg:journal.1135991
16 schema:keywords Hooke's law
17 Kelvin-Voigt model
18 Maxwell
19 account
20 amplitude
21 amplitude of oscillation
22 cases
23 coefficient
24 decrease
25 dependence
26 derivation
27 differential equations
28 elastic oscillations
29 equations
30 external harmonic load
31 external load
32 force
33 formula
34 frequency
35 harmonic load
36 increase
37 influence
38 law
39 load
40 load oscillations
41 materials
42 mathematical model
43 medium
44 medium resistance
45 method
46 model
47 natural oscillations
48 numerical method
49 one
50 oscillations
51 periodic increases
52 properties
53 regard
54 relaxation coefficient
55 relaxation properties
56 resistance
57 resistance coefficient
58 resistance force
59 resonant
60 resonant frequency
61 resonant ones
62 rods
63 stress
64 study
65 time
66 time dependence
67 values
68 way
69 schema:name Resonant and Bifurcation Oscillations of the Rod with Regard to the Resistance Forces and Relaxation Properties of the Medium
70 schema:pagination 584-590
71 schema:productId Na807b65a5a774e978cf3217956f41851
72 Ndc95c5ddd80c4beb8dd96d09d6ad1100
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119995720
74 https://doi.org/10.3103/s0025654418080125
75 schema:sdDatePublished 2022-05-20T07:35
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N50751c3bc8bd454ba2625862296466d5
78 schema:url https://doi.org/10.3103/s0025654418080125
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N47e6747d17f04f3c8387def64b302863 rdf:first sg:person.013117131562.63
83 rdf:rest rdf:nil
84 N50751c3bc8bd454ba2625862296466d5 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N5a6c59da63d34a80a79f002ff38369e1 rdf:first sg:person.014602635070.00
87 rdf:rest N47e6747d17f04f3c8387def64b302863
88 N6b36891dee4c4e02ad619b457bb8a4e3 schema:volumeNumber 53
89 rdf:type schema:PublicationVolume
90 N7845861b34734997aeab60bb187f3655 rdf:first sg:person.013233227267.53
91 rdf:rest N5a6c59da63d34a80a79f002ff38369e1
92 N8f3d6b73f39140d8ade37c19b969cb46 schema:issueNumber 5
93 rdf:type schema:PublicationIssue
94 Na807b65a5a774e978cf3217956f41851 schema:name dimensions_id
95 schema:value pub.1119995720
96 rdf:type schema:PropertyValue
97 Nca3d7d25126243129f70e98da0a4b1de rdf:first sg:person.015401043035.14
98 rdf:rest N7845861b34734997aeab60bb187f3655
99 Ndc95c5ddd80c4beb8dd96d09d6ad1100 schema:name doi
100 schema:value 10.3103/s0025654418080125
101 rdf:type schema:PropertyValue
102 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
103 schema:name Mathematical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
106 schema:name Applied Mathematics
107 rdf:type schema:DefinedTerm
108 sg:grant.8412342 http://pending.schema.org/fundedItem sg:pub.10.3103/s0025654418080125
109 rdf:type schema:MonetaryGrant
110 sg:journal.1135991 schema:issn 0025-6544
111 1934-7936
112 schema:name Mechanics of Solids
113 schema:publisher Allerton Press
114 rdf:type schema:Periodical
115 sg:person.013117131562.63 schema:affiliation grid-institutes:grid.445792.9
116 schema:familyName Kudinov
117 schema:givenName I. V.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117131562.63
119 rdf:type schema:Person
120 sg:person.013233227267.53 schema:affiliation grid-institutes:grid.445792.9
121 schema:familyName Zhukov
122 schema:givenName V. V.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233227267.53
124 rdf:type schema:Person
125 sg:person.014602635070.00 schema:affiliation grid-institutes:grid.445792.9
126 schema:familyName Kudinov
127 schema:givenName V. A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
129 rdf:type schema:Person
130 sg:person.015401043035.14 schema:affiliation grid-institutes:grid.445792.9
131 schema:familyName Eremin
132 schema:givenName A. V.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401043035.14
134 rdf:type schema:Person
135 sg:pub.10.1007/bf00828333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015375581
136 https://doi.org/10.1007/bf00828333
137 rdf:type schema:CreativeWork
138 sg:pub.10.3103/s0025654414050057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070973402
139 https://doi.org/10.3103/s0025654414050057
140 rdf:type schema:CreativeWork
141 sg:pub.10.3103/s0025654417060103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101395172
142 https://doi.org/10.3103/s0025654417060103
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia
145 schema:name Samara State Technical University, ul. Molodogvardeyskaya 244, 443100, Samara, Russia
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...