The probability of encountering an accidental DSM similarity in the presence of counter examples View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03

AUTHORS

D. V. Vinogradov

ABSTRACT

The “combinatorial explosion” of DSM hypotheses can be explained by the occurrence of DSM similarities only due to an accidental coincidence of several non-essential properties of training examples. The standard mechanisms for reducing the number of hypotheses are increasing the border by the number of parent examples and prohibition of counter examples. Considering the Bernoulli trials (for each training example and each attribute) with success probability pj for the jth non-essential attribute, we model a random training sample set for the occurrence of accidental DSM similarity. The same method is used to specify a set of counter examples. For this model, we compute the generating function of an accidental resemblance to the b parent examples at m potential counter examples. More... »

PAGES

43-46

References to SciGraph publications

  • 2014. VKF-Method of Hypotheses Generation in ANALYSIS OF IMAGES, SOCIAL NETWORKS AND TEXTS
  • 2000. Formalizing Hypotheses with Concepts in CONCEPTUAL STRUCTURES: LOGICAL, LINGUISTIC, AND COMPUTATIONAL ISSUES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s000510551502003x

    DOI

    http://dx.doi.org/10.3103/s000510551502003x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034547970


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "All Russian Institute for Scientific and Technical Information", 
              "id": "https://www.grid.ac/institutes/grid.463015.5", 
              "name": [
                "All-Russian Institute of Scientific and Technical Information, Russian Academy of Sciences Russian State University for the Humanities, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vinogradov", 
            "givenName": "D. V.", 
            "id": "sg:person.014546476452.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546476452.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/10722280_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010362921", 
              "https://doi.org/10.1007/10722280_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/10722280_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010362921", 
              "https://doi.org/10.1007/10722280_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-12580-0_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029426530", 
              "https://doi.org/10.1007/978-3-319-12580-0_25"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-03", 
        "datePublishedReg": "2015-03-01", 
        "description": "The \u201ccombinatorial explosion\u201d of DSM hypotheses can be explained by the occurrence of DSM similarities only due to an accidental coincidence of several non-essential properties of training examples. The standard mechanisms for reducing the number of hypotheses are increasing the border by the number of parent examples and prohibition of counter examples. Considering the Bernoulli trials (for each training example and each attribute) with success probability pj for the jth non-essential attribute, we model a random training sample set for the occurrence of accidental DSM similarity. The same method is used to specify a set of counter examples. For this model, we compute the generating function of an accidental resemblance to the b parent examples at m potential counter examples.", 
        "genre": "research_article", 
        "id": "sg:pub.10.3103/s000510551502003x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1010886", 
            "issn": [
              "0548-0027", 
              "0005-1055"
            ], 
            "name": "Automatic Documentation and Mathematical Linguistics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "name": "The probability of encountering an accidental DSM similarity in the presence of counter examples", 
        "pagination": "43-46", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a492d4bd558c69bd376074fdfa84caef55eea60922d71373dfff467995381af1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s000510551502003x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034547970"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s000510551502003x", 
          "https://app.dimensions.ai/details/publication/pub.1034547970"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.3103/S000510551502003X"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s000510551502003x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s000510551502003x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s000510551502003x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s000510551502003x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    69 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s000510551502003x schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author N70e9c85d1b3a4923a7175836944ae6dc
    4 schema:citation sg:pub.10.1007/10722280_24
    5 sg:pub.10.1007/978-3-319-12580-0_25
    6 schema:datePublished 2015-03
    7 schema:datePublishedReg 2015-03-01
    8 schema:description The “combinatorial explosion” of DSM hypotheses can be explained by the occurrence of DSM similarities only due to an accidental coincidence of several non-essential properties of training examples. The standard mechanisms for reducing the number of hypotheses are increasing the border by the number of parent examples and prohibition of counter examples. Considering the Bernoulli trials (for each training example and each attribute) with success probability pj for the jth non-essential attribute, we model a random training sample set for the occurrence of accidental DSM similarity. The same method is used to specify a set of counter examples. For this model, we compute the generating function of an accidental resemblance to the b parent examples at m potential counter examples.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Nbd64cc716f87439dbeb747d249e5978a
    13 Nfb191c5971744c1fb433f4020315cf3e
    14 sg:journal.1010886
    15 schema:name The probability of encountering an accidental DSM similarity in the presence of counter examples
    16 schema:pagination 43-46
    17 schema:productId N02565e2fe70c4069b9bbde42ab3a385b
    18 N258e57f9353749f5abbe565ff0913ed6
    19 Na8eb876325234adf81c2063d9b1aa88b
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034547970
    21 https://doi.org/10.3103/s000510551502003x
    22 schema:sdDatePublished 2019-04-10T23:19
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher Nbf7a888bfd014563a5320b32df5194a4
    25 schema:url http://link.springer.com/10.3103/S000510551502003X
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N02565e2fe70c4069b9bbde42ab3a385b schema:name readcube_id
    30 schema:value a492d4bd558c69bd376074fdfa84caef55eea60922d71373dfff467995381af1
    31 rdf:type schema:PropertyValue
    32 N258e57f9353749f5abbe565ff0913ed6 schema:name dimensions_id
    33 schema:value pub.1034547970
    34 rdf:type schema:PropertyValue
    35 N70e9c85d1b3a4923a7175836944ae6dc rdf:first sg:person.014546476452.99
    36 rdf:rest rdf:nil
    37 Na8eb876325234adf81c2063d9b1aa88b schema:name doi
    38 schema:value 10.3103/s000510551502003x
    39 rdf:type schema:PropertyValue
    40 Nbd64cc716f87439dbeb747d249e5978a schema:volumeNumber 49
    41 rdf:type schema:PublicationVolume
    42 Nbf7a888bfd014563a5320b32df5194a4 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 Nfb191c5971744c1fb433f4020315cf3e schema:issueNumber 2
    45 rdf:type schema:PublicationIssue
    46 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    47 schema:name Psychology and Cognitive Sciences
    48 rdf:type schema:DefinedTerm
    49 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Psychology
    51 rdf:type schema:DefinedTerm
    52 sg:journal.1010886 schema:issn 0005-1055
    53 0548-0027
    54 schema:name Automatic Documentation and Mathematical Linguistics
    55 rdf:type schema:Periodical
    56 sg:person.014546476452.99 schema:affiliation https://www.grid.ac/institutes/grid.463015.5
    57 schema:familyName Vinogradov
    58 schema:givenName D. V.
    59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014546476452.99
    60 rdf:type schema:Person
    61 sg:pub.10.1007/10722280_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010362921
    62 https://doi.org/10.1007/10722280_24
    63 rdf:type schema:CreativeWork
    64 sg:pub.10.1007/978-3-319-12580-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029426530
    65 https://doi.org/10.1007/978-3-319-12580-0_25
    66 rdf:type schema:CreativeWork
    67 https://www.grid.ac/institutes/grid.463015.5 schema:alternateName All Russian Institute for Scientific and Technical Information
    68 schema:name All-Russian Institute of Scientific and Technical Information, Russian Academy of Sciences Russian State University for the Humanities, Moscow, Russia
    69 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...