Fractional adsorption diffusion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09

AUTHORS

Gerd Baumann, Frank Stenger

ABSTRACT

The aim of this article is to generalize the diffusion based adsorption model to a fractional diffusion and fractional adsorption model. The models are formulated as nonlinear fractional boundary value problems equivalent to a singular Hammerstein integral equation. The novelty is that not only the diffusion component of the model is fractionalized but also the adsorption part. The singular Hammerstein integral equation is solved by Sinc approximations. Specific numerical schemes are presented. Based on these solutions we are able to identify different regimes of adsorption diffusion processes controlled by fractional derivatives verified by experimental data. These regimes allow to classify experiments if examined with respect to their scaling behavior. More... »

PAGES

737-764

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.2478/s13540-013-0046-3

DOI

http://dx.doi.org/10.2478/s13540-013-0046-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008495531


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Mathematics Department, German University in Cairo, New Cairo City, Egypt", 
            "Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumann", 
        "givenName": "Gerd", 
        "id": "sg:person.01247751074.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "School of Computing, University of Utah, 3414 Merrill Engineering Bldg., 84112, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stenger", 
        "givenName": "Frank", 
        "id": "sg:person.0732071774.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732071774.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01364969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004190142", 
          "https://doi.org/10.1007/bf01364969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01364969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004190142", 
          "https://doi.org/10.1007/bf01364969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01398686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005072316", 
          "https://doi.org/10.1007/bf01398686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01398686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005072316", 
          "https://doi.org/10.1007/bf01398686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690310222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005655232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pen.760210104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009758552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1995-1270624-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012617524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00879562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019350154", 
          "https://doi.org/10.1007/bf00879562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2706-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081631", 
          "https://doi.org/10.1007/978-1-4612-2706-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2706-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081631", 
          "https://doi.org/10.1007/978-1-4612-2706-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(94)90064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023267745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(94)90064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023267745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(02)00032-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024131382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01462237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028065308", 
          "https://doi.org/10.1007/bf01462237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01462237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028065308", 
          "https://doi.org/10.1007/bf01462237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1jm11318f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029671354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1971-0301428-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041276457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920111795470949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041654315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(00)00070-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042976136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s13540-011-0035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050350470", 
          "https://doi.org/10.2478/s13540-011-0035-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie00003a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055590689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100142a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055654710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100365a085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055667161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j150576a611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055695114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01544a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055806049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01567a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055808164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp961518l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056122281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp961518l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056122281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn100424g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.2455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.2455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511543234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098787281"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "The aim of this article is to generalize the diffusion based adsorption model to a fractional diffusion and fractional adsorption model. The models are formulated as nonlinear fractional boundary value problems equivalent to a singular Hammerstein integral equation. The novelty is that not only the diffusion component of the model is fractionalized but also the adsorption part. The singular Hammerstein integral equation is solved by Sinc approximations. Specific numerical schemes are presented. Based on these solutions we are able to identify different regimes of adsorption diffusion processes controlled by fractional derivatives verified by experimental data. These regimes allow to classify experiments if examined with respect to their scaling behavior.", 
    "genre": "research_article", 
    "id": "sg:pub.10.2478/s13540-013-0046-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047852", 
        "issn": [
          "1311-0454", 
          "1314-2224"
        ], 
        "name": "Fractional Calculus and Applied Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Fractional adsorption diffusion", 
    "pagination": "737-764", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2879504d99047b299bf35b7d12130ee4fdbef55b2a50e3545ecfb19b780be8f1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.2478/s13540-013-0046-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008495531"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.2478/s13540-013-0046-3", 
      "https://app.dimensions.ai/details/publication/pub.1008495531"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.2478/s13540-013-0046-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2478/s13540-013-0046-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2478/s13540-013-0046-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2478/s13540-013-0046-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2478/s13540-013-0046-3'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.2478/s13540-013-0046-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4ae4d0ecf1fb4f89a8897e761775699a
4 schema:citation sg:pub.10.1007/978-1-4612-2706-9
5 sg:pub.10.1007/bf00879562
6 sg:pub.10.1007/bf01364969
7 sg:pub.10.1007/bf01398686
8 sg:pub.10.1007/bf01462237
9 sg:pub.10.2478/s13540-011-0035-3
10 https://doi.org/10.1002/aic.690310222
11 https://doi.org/10.1002/pen.760210104
12 https://doi.org/10.1016/0378-4371(94)90064-7
13 https://doi.org/10.1016/s0266-3538(02)00032-5
14 https://doi.org/10.1016/s0370-1573(00)00070-3
15 https://doi.org/10.1017/cbo9780511543234
16 https://doi.org/10.1021/ie00003a010
17 https://doi.org/10.1021/j100142a019
18 https://doi.org/10.1021/j100365a085
19 https://doi.org/10.1021/j150576a611
20 https://doi.org/10.1021/ja01544a007
21 https://doi.org/10.1021/ja01567a004
22 https://doi.org/10.1021/jp961518l
23 https://doi.org/10.1021/nn100424g
24 https://doi.org/10.1039/c1jm11318f
25 https://doi.org/10.1090/s0025-5718-1971-0301428-0
26 https://doi.org/10.1090/s0025-5718-1995-1270624-7
27 https://doi.org/10.1103/physrevb.12.2455
28 https://doi.org/10.1103/physreve.81.010101
29 https://doi.org/10.2174/138920111795470949
30 schema:datePublished 2013-09
31 schema:datePublishedReg 2013-09-01
32 schema:description The aim of this article is to generalize the diffusion based adsorption model to a fractional diffusion and fractional adsorption model. The models are formulated as nonlinear fractional boundary value problems equivalent to a singular Hammerstein integral equation. The novelty is that not only the diffusion component of the model is fractionalized but also the adsorption part. The singular Hammerstein integral equation is solved by Sinc approximations. Specific numerical schemes are presented. Based on these solutions we are able to identify different regimes of adsorption diffusion processes controlled by fractional derivatives verified by experimental data. These regimes allow to classify experiments if examined with respect to their scaling behavior.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N476bdabbc84a47d4a8bc66b3c6f23573
37 N832764ed3da448e086523854ed4d32ea
38 sg:journal.1047852
39 schema:name Fractional adsorption diffusion
40 schema:pagination 737-764
41 schema:productId N156eef1835a845d8bf82d798628aa2a8
42 N558e2661fddb494daaf029e032f581b3
43 N7d37512cb474442d98bc531b2e0e45f3
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008495531
45 https://doi.org/10.2478/s13540-013-0046-3
46 schema:sdDatePublished 2019-04-11T01:05
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nbb5d6d73a0dd463ea8f13f6218509e30
49 schema:url http://link.springer.com/10.2478/s13540-013-0046-3
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N156eef1835a845d8bf82d798628aa2a8 schema:name doi
54 schema:value 10.2478/s13540-013-0046-3
55 rdf:type schema:PropertyValue
56 N476bdabbc84a47d4a8bc66b3c6f23573 schema:volumeNumber 16
57 rdf:type schema:PublicationVolume
58 N4ae4d0ecf1fb4f89a8897e761775699a rdf:first sg:person.01247751074.51
59 rdf:rest N74c20a8c93dc46089f21ecc770980407
60 N558e2661fddb494daaf029e032f581b3 schema:name dimensions_id
61 schema:value pub.1008495531
62 rdf:type schema:PropertyValue
63 N74c20a8c93dc46089f21ecc770980407 rdf:first sg:person.0732071774.59
64 rdf:rest rdf:nil
65 N7d37512cb474442d98bc531b2e0e45f3 schema:name readcube_id
66 schema:value 2879504d99047b299bf35b7d12130ee4fdbef55b2a50e3545ecfb19b780be8f1
67 rdf:type schema:PropertyValue
68 N832764ed3da448e086523854ed4d32ea schema:issueNumber 3
69 rdf:type schema:PublicationIssue
70 Nbb5d6d73a0dd463ea8f13f6218509e30 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1047852 schema:issn 1311-0454
79 1314-2224
80 schema:name Fractional Calculus and Applied Analysis
81 rdf:type schema:Periodical
82 sg:person.01247751074.51 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
83 schema:familyName Baumann
84 schema:givenName Gerd
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51
86 rdf:type schema:Person
87 sg:person.0732071774.59 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
88 schema:familyName Stenger
89 schema:givenName Frank
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732071774.59
91 rdf:type schema:Person
92 sg:pub.10.1007/978-1-4612-2706-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081631
93 https://doi.org/10.1007/978-1-4612-2706-9
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf00879562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019350154
96 https://doi.org/10.1007/bf00879562
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01364969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004190142
99 https://doi.org/10.1007/bf01364969
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01398686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005072316
102 https://doi.org/10.1007/bf01398686
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01462237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028065308
105 https://doi.org/10.1007/bf01462237
106 rdf:type schema:CreativeWork
107 sg:pub.10.2478/s13540-011-0035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050350470
108 https://doi.org/10.2478/s13540-011-0035-3
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/aic.690310222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005655232
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/pen.760210104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009758552
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0378-4371(94)90064-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023267745
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0266-3538(02)00032-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024131382
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0370-1573(00)00070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042976136
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1017/cbo9780511543234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787281
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/ie00003a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055590689
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/j100142a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055654710
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/j100365a085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055667161
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/j150576a611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055695114
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/ja01544a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055806049
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/ja01567a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055808164
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/jp961518l schema:sameAs https://app.dimensions.ai/details/publication/pub.1056122281
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/nn100424g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222501
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1039/c1jm11318f schema:sameAs https://app.dimensions.ai/details/publication/pub.1029671354
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1090/s0025-5718-1971-0301428-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041276457
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1090/s0025-5718-1995-1270624-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012617524
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.12.2455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060520084
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreve.81.010101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739946
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2174/138920111795470949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041654315
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
151 schema:name School of Computing, University of Utah, 3414 Merrill Engineering Bldg., 84112, Salt Lake City, UT, USA
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
154 schema:name Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
155 Mathematics Department, German University in Cairo, New Cairo City, Egypt
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...