A synchrony-based perspective for partner selection and attentional mechanism in human-robot interaction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

Syed Khursheed Hasnain, Ghiles Mostafaoui, Philippe Gaussier

ABSTRACT

Future robots must co-exist and directly interact with human beings. Designing these agents imply solving hard problems linked to human-robot interaction tasks. For instance, how a robot can choose an interacting partner among various agents and how a robot locates regions of interest in its visual field. Studies of neurobiology and psychology collectively named synchrony as an indispensable parameter for social interaction. We assumed that Human-Robot interaction could be initiated by synchrony detection. In this paper, we present a developmental approach for analyzing unintentional synchronization in human-robot interaction. Using our neural network model, the robot learns from a babbling step its inner dynamics by associating its own motor activities (oscillators) with the visual stimulus induced by its own motion. After learning the robot is capable of choosing an interacting agent and of localizing the spatial position of its preferred partner by synchrony detection. More... »

PAGES

156-171

References to SciGraph publications

  • 2000-02. Self-organizing processes: The sound of many hands clapping in NATURE
  • 2007-01. A Robot in Every Home in SCIENTIFIC AMERICAN
  • 2001-03. Synchronization and rhythmic processes in physiology in NATURE
  • 1993-12. Coupled oscillators and biological synchronization. in SCIENTIFIC AMERICAN
  • 2002-08. Mixed-species shoaling in fish: the sensory mechanisms and costs of shoal choice in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • 2010. How an Agent Can Detect and Use Synchrony Parameter of Its Own Interaction with a Human? in DEVELOPMENT OF MULTIMODAL INTERFACES: ACTIVE LISTENING AND SYNCHRONY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.2478/s13230-013-0111-y

    DOI

    http://dx.doi.org/10.2478/s13230-013-0111-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032869467


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Information Processing and System Research Lab", 
              "id": "https://www.grid.ac/institutes/grid.463844.9", 
              "name": [
                "Neurocybernetic team, ETIS, ENSEA, University of Cergy-Pontoise, 95302, Cergy-Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hasnain", 
            "givenName": "Syed Khursheed", 
            "id": "sg:person.013526206401.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013526206401.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Information Processing and System Research Lab", 
              "id": "https://www.grid.ac/institutes/grid.463844.9", 
              "name": [
                "Neurocybernetic team, ETIS, ENSEA, University of Cergy-Pontoise, 95302, Cergy-Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mostafaoui", 
            "givenName": "Ghiles", 
            "id": "sg:person.07554372752.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07554372752.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Information Processing and System Research Lab", 
              "id": "https://www.grid.ac/institutes/grid.463844.9", 
              "name": [
                "Neurocybernetic team, ETIS, ENSEA, University of Cergy-Pontoise, 95302, Cergy-Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaussier", 
            "givenName": "Philippe", 
            "id": "sg:person.01041272554.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.pone.0024893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004391889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0029772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004571065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1008662107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006589324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008071763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1228716.1228729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010826701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/088395198117550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011172070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12397-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011462446", 
              "https://doi.org/10.1007/978-3-642-12397-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12397-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011462446", 
              "https://doi.org/10.1007/978-3-642-12397-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2009.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018351028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0012166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020300392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00107510310001603129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020436622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00265-002-0505-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023632957", 
              "https://doi.org/10.1007/s00265-002-0505-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511489969.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025040056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-7687.00065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025612074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0163-6383(01)00055-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027417981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physrev.00041.2007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028411086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0107-58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029451088", 
              "https://doi.org/10.1038/scientificamerican0107-58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1089506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036462742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(81)90024-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039049535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neulet.2006.09.086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039118696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.robot.2008.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041012166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.res.61.5.704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042450410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fnhum.2011.00170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044543730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jecp.1998.2438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046663686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047952971", 
              "https://doi.org/10.1038/35002660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047952971", 
              "https://doi.org/10.1038/35002660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052077917", 
              "https://doi.org/10.1038/35065745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052077917", 
              "https://doi.org/10.1038/35065745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1293-102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056645247", 
              "https://doi.org/10.1038/scientificamerican1293-102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/t-affc.2012.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061447002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1967.1098599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061469434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tamd.2009.2021091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061488109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tamd.2010.2089790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061488150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tamd.2010.2097260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061488154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8721.2007.00532.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061935960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8721.2007.00532.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061935960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1501118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062232992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1166541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062459095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.166.3907.891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062498352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.183.4120.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062508859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0150098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062840874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219477504001653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062994276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21236/ad0241531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091822546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/roman.2012.6343797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095119997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/roman.2006.314402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095124301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511755743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098679872"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-09", 
        "datePublishedReg": "2012-09-01", 
        "description": "Future robots must co-exist and directly interact with human beings. Designing these agents imply solving hard problems linked to human-robot interaction tasks. For instance, how a robot can choose an interacting partner among various agents and how a robot locates regions of interest in its visual field. Studies of neurobiology and psychology collectively named synchrony as an indispensable parameter for social interaction. We assumed that Human-Robot interaction could be initiated by synchrony detection. In this paper, we present a developmental approach for analyzing unintentional synchronization in human-robot interaction. Using our neural network model, the robot learns from a babbling step its inner dynamics by associating its own motor activities (oscillators) with the visual stimulus induced by its own motion. After learning the robot is capable of choosing an interacting agent and of localizing the spatial position of its preferred partner by synchrony detection.", 
        "genre": "research_article", 
        "id": "sg:pub.10.2478/s13230-013-0111-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1047683", 
            "issn": [
              "2080-9778", 
              "2081-4836"
            ], 
            "name": "Paladyn", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "A synchrony-based perspective for partner selection and attentional mechanism in human-robot interaction", 
        "pagination": "156-171", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9c961422e7fd6f17e079ba7b4aeec3fd8cc679a4f3513eb3f566aef11b04088b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.2478/s13230-013-0111-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032869467"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.2478/s13230-013-0111-y", 
          "https://app.dimensions.ai/details/publication/pub.1032869467"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000482.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.2478/s13230-013-0111-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2478/s13230-013-0111-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2478/s13230-013-0111-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2478/s13230-013-0111-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2478/s13230-013-0111-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.2478/s13230-013-0111-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N0e809a80d1554aed99d50162e8cc907e
    4 schema:citation sg:pub.10.1007/978-3-642-12397-9_4
    5 sg:pub.10.1007/s00265-002-0505-z
    6 sg:pub.10.1038/35002660
    7 sg:pub.10.1038/35065745
    8 sg:pub.10.1038/scientificamerican0107-58
    9 sg:pub.10.1038/scientificamerican1293-102
    10 https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
    11 https://doi.org/10.1006/jecp.1998.2438
    12 https://doi.org/10.1016/0004-3702(81)90024-2
    13 https://doi.org/10.1016/j.neulet.2006.09.086
    14 https://doi.org/10.1016/j.neunet.2009.01.005
    15 https://doi.org/10.1016/j.robot.2008.07.006
    16 https://doi.org/10.1016/s0163-6383(01)00055-8
    17 https://doi.org/10.1017/cbo9780511489969.006
    18 https://doi.org/10.1017/cbo9780511755743
    19 https://doi.org/10.1073/pnas.1008662107
    20 https://doi.org/10.1080/00107510310001603129
    21 https://doi.org/10.1080/088395198117550
    22 https://doi.org/10.1109/roman.2006.314402
    23 https://doi.org/10.1109/roman.2012.6343797
    24 https://doi.org/10.1109/t-affc.2012.12
    25 https://doi.org/10.1109/tac.1967.1098599
    26 https://doi.org/10.1109/tamd.2009.2021091
    27 https://doi.org/10.1109/tamd.2010.2089790
    28 https://doi.org/10.1109/tamd.2010.2097260
    29 https://doi.org/10.1111/1467-7687.00065
    30 https://doi.org/10.1111/j.1467-8721.2007.00532.x
    31 https://doi.org/10.1119/1.1501118
    32 https://doi.org/10.1126/science.1089506
    33 https://doi.org/10.1126/science.1166541
    34 https://doi.org/10.1126/science.166.3907.891
    35 https://doi.org/10.1126/science.183.4120.99
    36 https://doi.org/10.1137/0150098
    37 https://doi.org/10.1142/s0219477504001653
    38 https://doi.org/10.1145/1228716.1228729
    39 https://doi.org/10.1152/physrev.00041.2007
    40 https://doi.org/10.1161/01.res.61.5.704
    41 https://doi.org/10.1371/journal.pone.0012166
    42 https://doi.org/10.1371/journal.pone.0024893
    43 https://doi.org/10.1371/journal.pone.0029772
    44 https://doi.org/10.21236/ad0241531
    45 https://doi.org/10.3389/fnhum.2011.00170
    46 schema:datePublished 2012-09
    47 schema:datePublishedReg 2012-09-01
    48 schema:description Future robots must co-exist and directly interact with human beings. Designing these agents imply solving hard problems linked to human-robot interaction tasks. For instance, how a robot can choose an interacting partner among various agents and how a robot locates regions of interest in its visual field. Studies of neurobiology and psychology collectively named synchrony as an indispensable parameter for social interaction. We assumed that Human-Robot interaction could be initiated by synchrony detection. In this paper, we present a developmental approach for analyzing unintentional synchronization in human-robot interaction. Using our neural network model, the robot learns from a babbling step its inner dynamics by associating its own motor activities (oscillators) with the visual stimulus induced by its own motion. After learning the robot is capable of choosing an interacting agent and of localizing the spatial position of its preferred partner by synchrony detection.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree true
    52 schema:isPartOf N663a37527cb64ba9a91feb1a1c69a2fa
    53 Nc427ad346f3149b1915fc24214051cb5
    54 sg:journal.1047683
    55 schema:name A synchrony-based perspective for partner selection and attentional mechanism in human-robot interaction
    56 schema:pagination 156-171
    57 schema:productId N06891499f14f44f88a666c2c5f2b8d9c
    58 Nb7554a77079b45138b3628c6b62f6cbb
    59 Neeec87ab2dc74d51945a96b5f2997c4a
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032869467
    61 https://doi.org/10.2478/s13230-013-0111-y
    62 schema:sdDatePublished 2019-04-11T01:52
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N07ba2329f5b0418bb9f5b1b4af181487
    65 schema:url http://link.springer.com/10.2478/s13230-013-0111-y
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N06891499f14f44f88a666c2c5f2b8d9c schema:name dimensions_id
    70 schema:value pub.1032869467
    71 rdf:type schema:PropertyValue
    72 N07ba2329f5b0418bb9f5b1b4af181487 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N0e809a80d1554aed99d50162e8cc907e rdf:first sg:person.013526206401.40
    75 rdf:rest N9b3af09e9d4343b3ab7e0c81f0fd0828
    76 N278a816989ac4d26a625e4f9c555b130 rdf:first sg:person.01041272554.05
    77 rdf:rest rdf:nil
    78 N663a37527cb64ba9a91feb1a1c69a2fa schema:issueNumber 3
    79 rdf:type schema:PublicationIssue
    80 N9b3af09e9d4343b3ab7e0c81f0fd0828 rdf:first sg:person.07554372752.19
    81 rdf:rest N278a816989ac4d26a625e4f9c555b130
    82 Nb7554a77079b45138b3628c6b62f6cbb schema:name readcube_id
    83 schema:value 9c961422e7fd6f17e079ba7b4aeec3fd8cc679a4f3513eb3f566aef11b04088b
    84 rdf:type schema:PropertyValue
    85 Nc427ad346f3149b1915fc24214051cb5 schema:volumeNumber 3
    86 rdf:type schema:PublicationVolume
    87 Neeec87ab2dc74d51945a96b5f2997c4a schema:name doi
    88 schema:value 10.2478/s13230-013-0111-y
    89 rdf:type schema:PropertyValue
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Artificial Intelligence and Image Processing
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1047683 schema:issn 2080-9778
    97 2081-4836
    98 schema:name Paladyn
    99 rdf:type schema:Periodical
    100 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.463844.9
    101 schema:familyName Gaussier
    102 schema:givenName Philippe
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
    104 rdf:type schema:Person
    105 sg:person.013526206401.40 schema:affiliation https://www.grid.ac/institutes/grid.463844.9
    106 schema:familyName Hasnain
    107 schema:givenName Syed Khursheed
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013526206401.40
    109 rdf:type schema:Person
    110 sg:person.07554372752.19 schema:affiliation https://www.grid.ac/institutes/grid.463844.9
    111 schema:familyName Mostafaoui
    112 schema:givenName Ghiles
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07554372752.19
    114 rdf:type schema:Person
    115 sg:pub.10.1007/978-3-642-12397-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011462446
    116 https://doi.org/10.1007/978-3-642-12397-9_4
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00265-002-0505-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023632957
    119 https://doi.org/10.1007/s00265-002-0505-z
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/35002660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047952971
    122 https://doi.org/10.1038/35002660
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/35065745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052077917
    125 https://doi.org/10.1038/35065745
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/scientificamerican0107-58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029451088
    128 https://doi.org/10.1038/scientificamerican0107-58
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1038/scientificamerican1293-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056645247
    131 https://doi.org/10.1038/scientificamerican1293-102
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1008071763
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1006/jecp.1998.2438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046663686
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/0004-3702(81)90024-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039049535
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.neulet.2006.09.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039118696
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.neunet.2009.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018351028
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.robot.2008.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041012166
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/s0163-6383(01)00055-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027417981
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1017/cbo9780511489969.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025040056
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1017/cbo9780511755743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679872
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1073/pnas.1008662107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006589324
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1080/00107510310001603129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020436622
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1080/088395198117550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011172070
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/roman.2006.314402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095124301
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/roman.2012.6343797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095119997
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/t-affc.2012.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061447002
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/tac.1967.1098599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061469434
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/tamd.2009.2021091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061488109
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tamd.2010.2089790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061488150
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tamd.2010.2097260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061488154
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1111/1467-7687.00065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025612074
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1111/j.1467-8721.2007.00532.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1061935960
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1119/1.1501118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062232992
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1126/science.1089506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036462742
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1126/science.1166541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459095
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1126/science.166.3907.891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062498352
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1126/science.183.4120.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062508859
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1137/0150098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840874
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1142/s0219477504001653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062994276
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1145/1228716.1228729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010826701
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1152/physrev.00041.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028411086
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1161/01.res.61.5.704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042450410
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1371/journal.pone.0012166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300392
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1371/journal.pone.0024893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004391889
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1371/journal.pone.0029772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004571065
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.21236/ad0241531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091822546
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.3389/fnhum.2011.00170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044543730
    204 rdf:type schema:CreativeWork
    205 https://www.grid.ac/institutes/grid.463844.9 schema:alternateName Information Processing and System Research Lab
    206 schema:name Neurocybernetic team, ETIS, ENSEA, University of Cergy-Pontoise, 95302, Cergy-Pontoise, France
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...