Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09

AUTHORS

J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, M. Muzal

ABSTRACT

Laser rangefinder performance (i.e., maximum range) is strongly affected by environment due to visibility-dependent laser attenuation in the atmosphere and target reflectivity variations induced by surface condition changes (dry vs. wet). Both factors have their unique spectral features which means that rangefinders operating at different wavelengths are affected by specific environmental changes in a different way. Current state of the art TOF (time of flight) semiconductor laser rangefinders are based mainly on two wavelengths: 905 nm and 1550 nm, which results from atmospheric transmission windows and availability of high power pulsed sources. The paper discusses the scope of maximum range degradation of hypothetical 0.9 μm and 1.5 μm rangefinders due to selected water-related environmental effects. Atmospheric extinction spectra were adapted from Standard Atmosphere Model and reflectance fingerprints of various materials have been measured. It is not the aim of the paper to determine in general which wavelength is superior for laser range finding, since a number of criteria could be considered, but to verify their susceptibility to adverse environmental conditions. More... »

PAGES

183-190

References to SciGraph publications

  • 2013-06. Review of night vision technology in OPTO-ELECTRONICS REVIEW
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.2478/s11772-014-0190-2

    DOI

    http://dx.doi.org/10.2478/s11772-014-0190-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002127850


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Military University of Technology in Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.69474.38", 
              "name": [
                "Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wojtanowski", 
            "givenName": "J.", 
            "id": "sg:person.016661507111.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661507111.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Military University of Technology in Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.69474.38", 
              "name": [
                "Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zygmunt", 
            "givenName": "M.", 
            "id": "sg:person.07704640067.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07704640067.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Military University of Technology in Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.69474.38", 
              "name": [
                "Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaszczuk", 
            "givenName": "M.", 
            "id": "sg:person.01037645564.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037645564.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Military University of Technology in Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.69474.38", 
              "name": [
                "Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mierczyk", 
            "givenName": "Z.", 
            "id": "sg:person.011421253614.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011421253614.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Military University of Technology in Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.69474.38", 
              "name": [
                "Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Muzal", 
            "givenName": "M.", 
            "id": "sg:person.010655330237.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655330237.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.55801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017101675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.1330700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026256288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2478/s11772-013-0089-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027318678", 
              "https://doi.org/10.2478/s11772-013-0089-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.25.000431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065100615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josa.64.001107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065153309"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-09", 
        "datePublishedReg": "2014-09-01", 
        "description": "Laser rangefinder performance (i.e., maximum range) is strongly affected by environment due to visibility-dependent laser attenuation in the atmosphere and target reflectivity variations induced by surface condition changes (dry vs. wet). Both factors have their unique spectral features which means that rangefinders operating at different wavelengths are affected by specific environmental changes in a different way. Current state of the art TOF (time of flight) semiconductor laser rangefinders are based mainly on two wavelengths: 905 nm and 1550 nm, which results from atmospheric transmission windows and availability of high power pulsed sources. The paper discusses the scope of maximum range degradation of hypothetical 0.9 \u03bcm and 1.5 \u03bcm rangefinders due to selected water-related environmental effects. Atmospheric extinction spectra were adapted from Standard Atmosphere Model and reflectance fingerprints of various materials have been measured. It is not the aim of the paper to determine in general which wavelength is superior for laser range finding, since a number of criteria could be considered, but to verify their susceptibility to adverse environmental conditions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.2478/s11772-014-0190-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1140848", 
            "issn": [
              "1230-3402", 
              "1896-3757"
            ], 
            "name": "Opto-Electronics Review", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "Comparison of 905 nm and 1550 nm semiconductor laser rangefinders\u2019 performance deterioration due to adverse environmental conditions", 
        "pagination": "183-190", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0a223acd37f1b2f36bf056cb225ca880e2e1aadd1df958bdf07c75a9c0a7ef71"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.2478/s11772-014-0190-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002127850"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.2478/s11772-014-0190-2", 
          "https://app.dimensions.ai/details/publication/pub.1002127850"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.2478/s11772-014-0190-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2478/s11772-014-0190-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2478/s11772-014-0190-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2478/s11772-014-0190-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2478/s11772-014-0190-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.2478/s11772-014-0190-2 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N453f10aaed7145468b89c478957303d6
    4 schema:citation sg:pub.10.2478/s11772-013-0089-3
    5 https://doi.org/10.1117/1.1330700
    6 https://doi.org/10.1117/12.55801
    7 https://doi.org/10.1364/ao.25.000431
    8 https://doi.org/10.1364/josa.64.001107
    9 schema:datePublished 2014-09
    10 schema:datePublishedReg 2014-09-01
    11 schema:description Laser rangefinder performance (i.e., maximum range) is strongly affected by environment due to visibility-dependent laser attenuation in the atmosphere and target reflectivity variations induced by surface condition changes (dry vs. wet). Both factors have their unique spectral features which means that rangefinders operating at different wavelengths are affected by specific environmental changes in a different way. Current state of the art TOF (time of flight) semiconductor laser rangefinders are based mainly on two wavelengths: 905 nm and 1550 nm, which results from atmospheric transmission windows and availability of high power pulsed sources. The paper discusses the scope of maximum range degradation of hypothetical 0.9 μm and 1.5 μm rangefinders due to selected water-related environmental effects. Atmospheric extinction spectra were adapted from Standard Atmosphere Model and reflectance fingerprints of various materials have been measured. It is not the aim of the paper to determine in general which wavelength is superior for laser range finding, since a number of criteria could be considered, but to verify their susceptibility to adverse environmental conditions.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N27ac17abd588488baeb91d26564563fa
    16 Ndac3cc9476114f688c76447bf8a1bb28
    17 sg:journal.1140848
    18 schema:name Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions
    19 schema:pagination 183-190
    20 schema:productId N28fdfdb986ee4bb6a265bd33fac340a8
    21 N2b771dadbfa04239887741746026f29b
    22 Nd49cf4a8f0df4bd4a2e7d4464d99e963
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002127850
    24 https://doi.org/10.2478/s11772-014-0190-2
    25 schema:sdDatePublished 2019-04-11T00:10
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N02e267ca18cb43f199dd92026281b984
    28 schema:url http://link.springer.com/10.2478/s11772-014-0190-2
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N02e267ca18cb43f199dd92026281b984 schema:name Springer Nature - SN SciGraph project
    33 rdf:type schema:Organization
    34 N27ac17abd588488baeb91d26564563fa schema:volumeNumber 22
    35 rdf:type schema:PublicationVolume
    36 N28fdfdb986ee4bb6a265bd33fac340a8 schema:name doi
    37 schema:value 10.2478/s11772-014-0190-2
    38 rdf:type schema:PropertyValue
    39 N2b771dadbfa04239887741746026f29b schema:name dimensions_id
    40 schema:value pub.1002127850
    41 rdf:type schema:PropertyValue
    42 N453f10aaed7145468b89c478957303d6 rdf:first sg:person.016661507111.71
    43 rdf:rest N4828b903480b4facb19b102fd8fcf799
    44 N4828b903480b4facb19b102fd8fcf799 rdf:first sg:person.07704640067.68
    45 rdf:rest N7721c8b5400d49979287d3294c205179
    46 N7721c8b5400d49979287d3294c205179 rdf:first sg:person.01037645564.52
    47 rdf:rest N99af1c0d4f7f4dab963596430181a08b
    48 N99af1c0d4f7f4dab963596430181a08b rdf:first sg:person.011421253614.13
    49 rdf:rest Nc9202b5aa18b4f47b91804a360dce11a
    50 Nc9202b5aa18b4f47b91804a360dce11a rdf:first sg:person.010655330237.18
    51 rdf:rest rdf:nil
    52 Nd49cf4a8f0df4bd4a2e7d4464d99e963 schema:name readcube_id
    53 schema:value 0a223acd37f1b2f36bf056cb225ca880e2e1aadd1df958bdf07c75a9c0a7ef71
    54 rdf:type schema:PropertyValue
    55 Ndac3cc9476114f688c76447bf8a1bb28 schema:issueNumber 3
    56 rdf:type schema:PublicationIssue
    57 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Chemical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Physical Chemistry (incl. Structural)
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1140848 schema:issn 1230-3402
    64 1896-3757
    65 schema:name Opto-Electronics Review
    66 rdf:type schema:Periodical
    67 sg:person.01037645564.52 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
    68 schema:familyName Kaszczuk
    69 schema:givenName M.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037645564.52
    71 rdf:type schema:Person
    72 sg:person.010655330237.18 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
    73 schema:familyName Muzal
    74 schema:givenName M.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655330237.18
    76 rdf:type schema:Person
    77 sg:person.011421253614.13 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
    78 schema:familyName Mierczyk
    79 schema:givenName Z.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011421253614.13
    81 rdf:type schema:Person
    82 sg:person.016661507111.71 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
    83 schema:familyName Wojtanowski
    84 schema:givenName J.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661507111.71
    86 rdf:type schema:Person
    87 sg:person.07704640067.68 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
    88 schema:familyName Zygmunt
    89 schema:givenName M.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07704640067.68
    91 rdf:type schema:Person
    92 sg:pub.10.2478/s11772-013-0089-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027318678
    93 https://doi.org/10.2478/s11772-013-0089-3
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1117/1.1330700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026256288
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1117/12.55801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017101675
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1364/ao.25.000431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065100615
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1364/josa.64.001107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065153309
    102 rdf:type schema:CreativeWork
    103 https://www.grid.ac/institutes/grid.69474.38 schema:alternateName Military University of Technology in Warsaw
    104 schema:name Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...