Thermal resistance of GaAs/AlAs superlattices used in modern light-emitting diodes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06

AUTHORS

D. Żak, W. Nakwaski

ABSTRACT

Superlattices are used in modern light-emitting diodes to modify intentionally electron, phonon and/or photon transport within their volumes, which leads to their expected performance characteristics. In particular, superlattices may have a dramatic impact on device thermal properties. Superlattice thermal resistance is anisotropic and usually distinctly higher than its values in constituent bulk materials, which results from phonon reflections and/or phonon scatterings at numerous layer interfaces. In the present paper, thermal resistance of a typical superlattice of layer thicknesses neither much higher nor much lower than the phonon free path is discussed. Besides, as an important example, thermal resistance of the typical GaAs/AlAs superlattice is determined theoretically and compared with its measured values known from literature. More... »

PAGES

86-91

References to SciGraph publications

Journal

TITLE

Opto-Electronics Review

ISSUE

2

VOLUME

22

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.2478/s11772-014-0181-3

DOI

http://dx.doi.org/10.2478/s11772-014-0181-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012004022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lodz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Photonics Group, Institute of Physics, Technical University of Lodz, 219 W\u00f3lcza\u0144ska Str., 90-924, \u0141\u00f3d\u017a, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u017bak", 
        "givenName": "D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lodz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Photonics Group, Institute of Physics, Technical University of Lodz, 219 W\u00f3lcza\u0144ska Str., 90-924, \u0141\u00f3d\u017a, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakwaski", 
        "givenName": "W.", 
        "id": "sg:person.013013715604.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013715604.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0022-3727/44/8/085101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012621033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s11772-007-0028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017570372", 
          "https://doi.org/10.2478/s11772-007-0028-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-007-9151-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021076591", 
          "https://doi.org/10.1007/s11082-007-9151-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p59-037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029502606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3075065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051908867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19930677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056779288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1524305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057716323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2645110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057858024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2913057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057881582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3054383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057901328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.14958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.14958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.8105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.8105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2007.910102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061335517"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06", 
    "datePublishedReg": "2014-06-01", 
    "description": "Superlattices are used in modern light-emitting diodes to modify intentionally electron, phonon and/or photon transport within their volumes, which leads to their expected performance characteristics. In particular, superlattices may have a dramatic impact on device thermal properties. Superlattice thermal resistance is anisotropic and usually distinctly higher than its values in constituent bulk materials, which results from phonon reflections and/or phonon scatterings at numerous layer interfaces. In the present paper, thermal resistance of a typical superlattice of layer thicknesses neither much higher nor much lower than the phonon free path is discussed. Besides, as an important example, thermal resistance of the typical GaAs/AlAs superlattice is determined theoretically and compared with its measured values known from literature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.2478/s11772-014-0181-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1140848", 
        "issn": [
          "1230-3402", 
          "1896-3757"
        ], 
        "name": "Opto-Electronics Review", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Thermal resistance of GaAs/AlAs superlattices used in modern light-emitting diodes", 
    "pagination": "86-91", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "39319618e4daa20a3088f1113e5c1083a01ef0e0e4b1f1e01e007367ad25d628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.2478/s11772-014-0181-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012004022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.2478/s11772-014-0181-3", 
      "https://app.dimensions.ai/details/publication/pub.1012004022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.2478/s11772-014-0181-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2478/s11772-014-0181-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2478/s11772-014-0181-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2478/s11772-014-0181-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2478/s11772-014-0181-3'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.2478/s11772-014-0181-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9bb7fa818ea94769a8e136d5ad71a73e
4 schema:citation sg:pub.10.1007/s11082-007-9151-z
5 sg:pub.10.2478/s11772-007-0028-2
6 https://doi.org/10.1049/el:19930677
7 https://doi.org/10.1063/1.1524305
8 https://doi.org/10.1063/1.2645110
9 https://doi.org/10.1063/1.2913057
10 https://doi.org/10.1063/1.3054383
11 https://doi.org/10.1063/1.3075065
12 https://doi.org/10.1088/0022-3727/44/8/085101
13 https://doi.org/10.1103/physrevb.57.14958
14 https://doi.org/10.1103/physrevb.59.8105
15 https://doi.org/10.1103/revmodphys.61.605
16 https://doi.org/10.1109/jstqe.2007.910102
17 https://doi.org/10.1139/p59-037
18 schema:datePublished 2014-06
19 schema:datePublishedReg 2014-06-01
20 schema:description Superlattices are used in modern light-emitting diodes to modify intentionally electron, phonon and/or photon transport within their volumes, which leads to their expected performance characteristics. In particular, superlattices may have a dramatic impact on device thermal properties. Superlattice thermal resistance is anisotropic and usually distinctly higher than its values in constituent bulk materials, which results from phonon reflections and/or phonon scatterings at numerous layer interfaces. In the present paper, thermal resistance of a typical superlattice of layer thicknesses neither much higher nor much lower than the phonon free path is discussed. Besides, as an important example, thermal resistance of the typical GaAs/AlAs superlattice is determined theoretically and compared with its measured values known from literature.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N428dc96335db48a794b36cf286871ce2
25 Nde1d7ebfbb394e44a4a68ac76355799a
26 sg:journal.1140848
27 schema:name Thermal resistance of GaAs/AlAs superlattices used in modern light-emitting diodes
28 schema:pagination 86-91
29 schema:productId N5a920c83e72043729078c9b8fda5800b
30 N74702474548c4ac1914176dc53218052
31 Nf170342ceee940a4b1549635cd905c4d
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012004022
33 https://doi.org/10.2478/s11772-014-0181-3
34 schema:sdDatePublished 2019-04-11T00:08
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N00da1e0230dd4113b6e3b03a519d3a13
37 schema:url http://link.springer.com/10.2478/s11772-014-0181-3
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N00da1e0230dd4113b6e3b03a519d3a13 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N1d8c9828db174287a5d62e63322c84d9 rdf:first sg:person.013013715604.18
44 rdf:rest rdf:nil
45 N428dc96335db48a794b36cf286871ce2 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 N5a920c83e72043729078c9b8fda5800b schema:name doi
48 schema:value 10.2478/s11772-014-0181-3
49 rdf:type schema:PropertyValue
50 N74702474548c4ac1914176dc53218052 schema:name readcube_id
51 schema:value 39319618e4daa20a3088f1113e5c1083a01ef0e0e4b1f1e01e007367ad25d628
52 rdf:type schema:PropertyValue
53 N94c19b59b0594cb5af99729581626ff4 schema:affiliation https://www.grid.ac/institutes/grid.412284.9
54 schema:familyName Żak
55 schema:givenName D.
56 rdf:type schema:Person
57 N9bb7fa818ea94769a8e136d5ad71a73e rdf:first N94c19b59b0594cb5af99729581626ff4
58 rdf:rest N1d8c9828db174287a5d62e63322c84d9
59 Nde1d7ebfbb394e44a4a68ac76355799a schema:volumeNumber 22
60 rdf:type schema:PublicationVolume
61 Nf170342ceee940a4b1549635cd905c4d schema:name dimensions_id
62 schema:value pub.1012004022
63 rdf:type schema:PropertyValue
64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
65 schema:name Engineering
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
68 schema:name Materials Engineering
69 rdf:type schema:DefinedTerm
70 sg:journal.1140848 schema:issn 1230-3402
71 1896-3757
72 schema:name Opto-Electronics Review
73 rdf:type schema:Periodical
74 sg:person.013013715604.18 schema:affiliation https://www.grid.ac/institutes/grid.412284.9
75 schema:familyName Nakwaski
76 schema:givenName W.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013715604.18
78 rdf:type schema:Person
79 sg:pub.10.1007/s11082-007-9151-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021076591
80 https://doi.org/10.1007/s11082-007-9151-z
81 rdf:type schema:CreativeWork
82 sg:pub.10.2478/s11772-007-0028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017570372
83 https://doi.org/10.2478/s11772-007-0028-2
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1049/el:19930677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056779288
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1063/1.1524305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057716323
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1063/1.2645110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057858024
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1063/1.2913057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057881582
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.3054383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057901328
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.3075065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051908867
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/0022-3727/44/8/085101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012621033
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevb.57.14958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587636
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevb.59.8105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592059
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/revmodphys.61.605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839181
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/jstqe.2007.910102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061335517
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1139/p59-037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029502606
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.412284.9 schema:alternateName Lodz University of Technology
110 schema:name Photonics Group, Institute of Physics, Technical University of Lodz, 219 Wólczańska Str., 90-924, Łódź, Poland
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...