Classifying bases for 6D F-theory models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

David R. Morrison, Washington Taylor

ABSTRACT

We classify six-dimensional F-theory compactifications in terms of simple features of the divisor structure of the base surface of the elliptic fibration. This structure controls the minimal spectrum of the theory. We determine all irreducible configurations of divisors (“clusters”) that are required to carry nonabelian gauge group factors based on the intersections of the divisors with one another and with the canonical class of the base. All 6D F-theory models are built from combinations of these irreducible configurations. Physically, this geometric structure characterizes the gauge algebra and matter that can remain in a 6D theory after maximal Higgsing. These results suggest that all 6D supergravity theories realized in F-theory have a maximally Higgsed phase in which the gauge algebra is built out of summands of the types su(3), so(8), f4, e6, e8, e8, (g2 ⊕ su(2)); and su(2) ⊕ so(7) ⊕ su(2), with minimal matter content charged only under the last three types of summands, corresponding to the non-Higgsable cluster types identified through F-theory geometry. Although we have identified all such geometric clusters, we have not proven that there cannot be an obstruction to Higgsing to the minimal gauge and matter configuration for any possible F-theory model. We also identify bounds on the number of tensor fields allowed in a theory with any fixed gauge algebra; we use this to bound the size of the gauge group (or algebra) in a simple class of F-theory bases. More... »

PAGES

1072-1088

Identifiers

URI

http://scigraph.springernature.com/pub.10.2478/s11534-012-0065-4

DOI

http://dx.doi.org/10.2478/s11534-012-0065-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047857136


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Departments of Mathematics and Physics, University of California, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morrison", 
        "givenName": "David R.", 
        "id": "sg:person.011316747253.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316747253.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Center for Theoretical Physics, Department of Physics Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Washington", 
        "id": "sg:person.012525750455.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525750455.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01459246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008923720", 
          "https://doi.org/10.1007/bf01459246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01459246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008923720", 
          "https://doi.org/10.1007/bf01459246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0085872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037807652", 
          "https://doi.org/10.1007/bfb0085872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0085872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037807652", 
          "https://doi.org/10.1007/bfb0085872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-94-07414-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "We classify six-dimensional F-theory compactifications in terms of simple features of the divisor structure of the base surface of the elliptic fibration. This structure controls the minimal spectrum of the theory. We determine all irreducible configurations of divisors (\u201cclusters\u201d) that are required to carry nonabelian gauge group factors based on the intersections of the divisors with one another and with the canonical class of the base. All 6D F-theory models are built from combinations of these irreducible configurations. Physically, this geometric structure characterizes the gauge algebra and matter that can remain in a 6D theory after maximal Higgsing. These results suggest that all 6D supergravity theories realized in F-theory have a maximally Higgsed phase in which the gauge algebra is built out of summands of the types su(3), so(8), f4, e6, e8, e8, (g2 \u2295 su(2)); and su(2) \u2295 so(7) \u2295 su(2), with minimal matter content charged only under the last three types of summands, corresponding to the non-Higgsable cluster types identified through F-theory geometry. Although we have identified all such geometric clusters, we have not proven that there cannot be an obstruction to Higgsing to the minimal gauge and matter configuration for any possible F-theory model. We also identify bounds on the number of tensor fields allowed in a theory with any fixed gauge algebra; we use this to bound the size of the gauge group (or algebra) in a simple class of F-theory bases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.2478/s11534-012-0065-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1280627", 
        "issn": [
          "1895-1082", 
          "1644-3608"
        ], 
        "name": "Central European Journal of Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Classifying bases for 6D F-theory models", 
    "pagination": "1072-1088", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e3fad12a15975dbd0d5ab3a57314ecf21efb580894c77fb7f27d01b7cd0cce3d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.2478/s11534-012-0065-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047857136"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.2478/s11534-012-0065-4", 
      "https://app.dimensions.ai/details/publication/pub.1047857136"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.2478/s11534-012-0065-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2478/s11534-012-0065-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2478/s11534-012-0065-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2478/s11534-012-0065-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2478/s11534-012-0065-4'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.2478/s11534-012-0065-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfee50ff4d9cf4e558e798db0afe03e9c
4 schema:citation sg:pub.10.1007/bf01459246
5 sg:pub.10.1007/bfb0085872
6 https://doi.org/10.1215/s0012-7094-94-07414-0
7 https://doi.org/10.2307/1970131
8 https://doi.org/10.2307/1970500
9 schema:datePublished 2012-10
10 schema:datePublishedReg 2012-10-01
11 schema:description We classify six-dimensional F-theory compactifications in terms of simple features of the divisor structure of the base surface of the elliptic fibration. This structure controls the minimal spectrum of the theory. We determine all irreducible configurations of divisors (“clusters”) that are required to carry nonabelian gauge group factors based on the intersections of the divisors with one another and with the canonical class of the base. All 6D F-theory models are built from combinations of these irreducible configurations. Physically, this geometric structure characterizes the gauge algebra and matter that can remain in a 6D theory after maximal Higgsing. These results suggest that all 6D supergravity theories realized in F-theory have a maximally Higgsed phase in which the gauge algebra is built out of summands of the types su(3), so(8), f4, e6, e8, e8, (g2 ⊕ su(2)); and su(2) ⊕ so(7) ⊕ su(2), with minimal matter content charged only under the last three types of summands, corresponding to the non-Higgsable cluster types identified through F-theory geometry. Although we have identified all such geometric clusters, we have not proven that there cannot be an obstruction to Higgsing to the minimal gauge and matter configuration for any possible F-theory model. We also identify bounds on the number of tensor fields allowed in a theory with any fixed gauge algebra; we use this to bound the size of the gauge group (or algebra) in a simple class of F-theory bases.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N0a102609732e4ecfa3aa23565770a7d1
16 Nd75bfd7021da4d9894e5eeaa52bdd81c
17 sg:journal.1280627
18 schema:name Classifying bases for 6D F-theory models
19 schema:pagination 1072-1088
20 schema:productId N746a6bd78c8b4f1c880fe80b1948ed15
21 N94f4c76d49904f4b948b06d795abdb78
22 Nd6d0fa32b5f5415cbd06ac0b43ab7cd4
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047857136
24 https://doi.org/10.2478/s11534-012-0065-4
25 schema:sdDatePublished 2019-04-10T19:07
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N80b000b53e2642c5b2bc3542af1571fa
28 schema:url http://link.springer.com/10.2478/s11534-012-0065-4
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0a102609732e4ecfa3aa23565770a7d1 schema:volumeNumber 10
33 rdf:type schema:PublicationVolume
34 N62a6e19a0cda40a48403287697e9b5b4 rdf:first sg:person.012525750455.34
35 rdf:rest rdf:nil
36 N746a6bd78c8b4f1c880fe80b1948ed15 schema:name dimensions_id
37 schema:value pub.1047857136
38 rdf:type schema:PropertyValue
39 N80b000b53e2642c5b2bc3542af1571fa schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N94f4c76d49904f4b948b06d795abdb78 schema:name readcube_id
42 schema:value e3fad12a15975dbd0d5ab3a57314ecf21efb580894c77fb7f27d01b7cd0cce3d
43 rdf:type schema:PropertyValue
44 Nd6d0fa32b5f5415cbd06ac0b43ab7cd4 schema:name doi
45 schema:value 10.2478/s11534-012-0065-4
46 rdf:type schema:PropertyValue
47 Nd75bfd7021da4d9894e5eeaa52bdd81c schema:issueNumber 5
48 rdf:type schema:PublicationIssue
49 Nfee50ff4d9cf4e558e798db0afe03e9c rdf:first sg:person.011316747253.35
50 rdf:rest N62a6e19a0cda40a48403287697e9b5b4
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1280627 schema:issn 1644-3608
58 1895-1082
59 schema:name Central European Journal of Physics
60 rdf:type schema:Periodical
61 sg:person.011316747253.35 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
62 schema:familyName Morrison
63 schema:givenName David R.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316747253.35
65 rdf:type schema:Person
66 sg:person.012525750455.34 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
67 schema:familyName Taylor
68 schema:givenName Washington
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525750455.34
70 rdf:type schema:Person
71 sg:pub.10.1007/bf01459246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008923720
72 https://doi.org/10.1007/bf01459246
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bfb0085872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037807652
75 https://doi.org/10.1007/bfb0085872
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1215/s0012-7094-94-07414-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419970
78 rdf:type schema:CreativeWork
79 https://doi.org/10.2307/1970131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675474
80 rdf:type schema:CreativeWork
81 https://doi.org/10.2307/1970500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675823
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
84 schema:name Center for Theoretical Physics, Department of Physics Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
87 schema:name Departments of Mathematics and Physics, University of California, 93106, Santa Barbara, CA, USA
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...