A state-based regression model for estimating substate life expectancy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1989-02

AUTHORS

David A. Swanson

ABSTRACT

Life expectancy is an important indicator of the level of mortality in a population. However, the conventional way of calculating life expectancy--constructing a life table--has rigorous data requirements. As a consequence, life expectancy data are not usually available for substate areas. In this article, a regression model for estimating life expectancy is constructed, using state-level data, and is tested against two sets of 1980 life expectancy data: (1) a nationwide sample of metropolitan areas and (2) selected cities, their suburbs, and rural counties in Ohio. An additional test shows the sensitivity of the model's accuracy to errors in one of its input data elements. The results suggest that the model should be given serious consideration for generating life expectancy estimates for substate areas. More... »

PAGES

161-170

Identifiers

URI

http://scigraph.springernature.com/pub.10.2307/2061502

DOI

http://dx.doi.org/10.2307/2061502

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049650822

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/2737356


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Demography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Life Expectancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pacific Lutheran University", 
          "id": "https://www.grid.ac/institutes/grid.261584.c", 
          "name": [
            "Department of Sociology, Pacific Lutheran University, 98447, Tacoma, Washington"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swanson", 
        "givenName": "David A.", 
        "id": "sg:person.0765553121.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765553121.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00324728.1982.10409034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001950916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2061094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010154552", 
          "https://doi.org/10.2307/2061094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2060525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011812607", 
          "https://doi.org/10.2307/2060525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00324728.1980.10410395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019771407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/216298b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027455049", 
          "https://doi.org/10.1038/216298b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/216298b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027455049", 
          "https://doi.org/10.1038/216298b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00324728.1969.10405279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048125768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.182.4117.1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062508668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1936612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069660647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2172903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069805188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2174079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069806161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2174203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069806224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2175192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069806389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075131627", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075133896", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075159636", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-02", 
    "datePublishedReg": "1989-02-01", 
    "description": "Life expectancy is an important indicator of the level of mortality in a population. However, the conventional way of calculating life expectancy--constructing a life table--has rigorous data requirements. As a consequence, life expectancy data are not usually available for substate areas. In this article, a regression model for estimating life expectancy is constructed, using state-level data, and is tested against two sets of 1980 life expectancy data: (1) a nationwide sample of metropolitan areas and (2) selected cities, their suburbs, and rural counties in Ohio. An additional test shows the sensitivity of the model's accuracy to errors in one of its input data elements. The results suggest that the model should be given serious consideration for generating life expectancy estimates for substate areas.", 
    "genre": "research_article", 
    "id": "sg:pub.10.2307/2061502", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1012733", 
        "issn": [
          "0070-3370", 
          "1533-7790"
        ], 
        "name": "Demography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "A state-based regression model for estimating substate life expectancy", 
    "pagination": "161-170", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec85839301b744a6bf4cc94c4fdad72685d7008cfa216864b1fe27244267cd4e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "2737356"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0226703"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.2307/2061502"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049650822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.2307/2061502", 
      "https://app.dimensions.ai/details/publication/pub.1049650822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.2307/2061502"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2307/2061502'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2307/2061502'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2307/2061502'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2307/2061502'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      50 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.2307/2061502 schema:about N0435208d5b06406ea79fe8f7c7839f34
2 N704a267015864372b6e3f1995fc9975c
3 N912e332611574c48814f1ba8f1fb328e
4 Naf846cf5670a415583528fff64fb02a4
5 Ne49bf52fc14844b5bfd9f4b4f130d809
6 Ne72c840a70fe469f951c0ea9d182e1ce
7 anzsrc-for:11
8 anzsrc-for:1117
9 schema:author N0ee67343991b446b8c90ec8d2696713a
10 schema:citation sg:pub.10.1038/216298b0
11 sg:pub.10.2307/2060525
12 sg:pub.10.2307/2061094
13 https://app.dimensions.ai/details/publication/pub.1075131627
14 https://app.dimensions.ai/details/publication/pub.1075133896
15 https://app.dimensions.ai/details/publication/pub.1075159636
16 https://doi.org/10.1080/00324728.1969.10405279
17 https://doi.org/10.1080/00324728.1980.10410395
18 https://doi.org/10.1080/00324728.1982.10409034
19 https://doi.org/10.1126/science.182.4117.1102
20 https://doi.org/10.2307/1936612
21 https://doi.org/10.2307/2172903
22 https://doi.org/10.2307/2174079
23 https://doi.org/10.2307/2174203
24 https://doi.org/10.2307/2175192
25 schema:datePublished 1989-02
26 schema:datePublishedReg 1989-02-01
27 schema:description Life expectancy is an important indicator of the level of mortality in a population. However, the conventional way of calculating life expectancy--constructing a life table--has rigorous data requirements. As a consequence, life expectancy data are not usually available for substate areas. In this article, a regression model for estimating life expectancy is constructed, using state-level data, and is tested against two sets of 1980 life expectancy data: (1) a nationwide sample of metropolitan areas and (2) selected cities, their suburbs, and rural counties in Ohio. An additional test shows the sensitivity of the model's accuracy to errors in one of its input data elements. The results suggest that the model should be given serious consideration for generating life expectancy estimates for substate areas.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N68debc9919014ff0990d7e56b5d29a81
32 N90d058deb85d4a548ae0d9218b829493
33 sg:journal.1012733
34 schema:name A state-based regression model for estimating substate life expectancy
35 schema:pagination 161-170
36 schema:productId N297d99d09ca44077a8cf8053aff2fdd0
37 N825bcbdd76904ab2a63ff2ef4fef2931
38 Na3782444865148b9927bfa79fa9cdf8d
39 Ncc6187b0165c4b6e93eb37b2fa97ca07
40 Nd5466ba33f9040bfaf0b8af9899a410e
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049650822
42 https://doi.org/10.2307/2061502
43 schema:sdDatePublished 2019-04-11T01:04
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N73cb4f7d689c421e9ae643916c25c645
46 schema:url http://link.springer.com/10.2307/2061502
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0435208d5b06406ea79fe8f7c7839f34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Humans
52 rdf:type schema:DefinedTerm
53 N0ee67343991b446b8c90ec8d2696713a rdf:first sg:person.0765553121.69
54 rdf:rest rdf:nil
55 N297d99d09ca44077a8cf8053aff2fdd0 schema:name pubmed_id
56 schema:value 2737356
57 rdf:type schema:PropertyValue
58 N68debc9919014ff0990d7e56b5d29a81 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N704a267015864372b6e3f1995fc9975c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Life Expectancy
62 rdf:type schema:DefinedTerm
63 N73cb4f7d689c421e9ae643916c25c645 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N825bcbdd76904ab2a63ff2ef4fef2931 schema:name doi
66 schema:value 10.2307/2061502
67 rdf:type schema:PropertyValue
68 N90d058deb85d4a548ae0d9218b829493 schema:volumeNumber 26
69 rdf:type schema:PublicationVolume
70 N912e332611574c48814f1ba8f1fb328e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name United States
72 rdf:type schema:DefinedTerm
73 Na3782444865148b9927bfa79fa9cdf8d schema:name dimensions_id
74 schema:value pub.1049650822
75 rdf:type schema:PropertyValue
76 Naf846cf5670a415583528fff64fb02a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Demography
78 rdf:type schema:DefinedTerm
79 Ncc6187b0165c4b6e93eb37b2fa97ca07 schema:name readcube_id
80 schema:value ec85839301b744a6bf4cc94c4fdad72685d7008cfa216864b1fe27244267cd4e
81 rdf:type schema:PropertyValue
82 Nd5466ba33f9040bfaf0b8af9899a410e schema:name nlm_unique_id
83 schema:value 0226703
84 rdf:type schema:PropertyValue
85 Ne49bf52fc14844b5bfd9f4b4f130d809 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Models, Statistical
87 rdf:type schema:DefinedTerm
88 Ne72c840a70fe469f951c0ea9d182e1ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Regression Analysis
90 rdf:type schema:DefinedTerm
91 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
92 schema:name Medical and Health Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
95 schema:name Public Health and Health Services
96 rdf:type schema:DefinedTerm
97 sg:journal.1012733 schema:issn 0070-3370
98 1533-7790
99 schema:name Demography
100 rdf:type schema:Periodical
101 sg:person.0765553121.69 schema:affiliation https://www.grid.ac/institutes/grid.261584.c
102 schema:familyName Swanson
103 schema:givenName David A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765553121.69
105 rdf:type schema:Person
106 sg:pub.10.1038/216298b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027455049
107 https://doi.org/10.1038/216298b0
108 rdf:type schema:CreativeWork
109 sg:pub.10.2307/2060525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011812607
110 https://doi.org/10.2307/2060525
111 rdf:type schema:CreativeWork
112 sg:pub.10.2307/2061094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010154552
113 https://doi.org/10.2307/2061094
114 rdf:type schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1075131627 schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1075133896 schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1075159636 schema:CreativeWork
118 https://doi.org/10.1080/00324728.1969.10405279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048125768
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/00324728.1980.10410395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019771407
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/00324728.1982.10409034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001950916
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1126/science.182.4117.1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062508668
125 rdf:type schema:CreativeWork
126 https://doi.org/10.2307/1936612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069660647
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2307/2172903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069805188
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2307/2174079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069806161
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2307/2174203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069806224
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2307/2175192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069806389
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.261584.c schema:alternateName Pacific Lutheran University
137 schema:name Department of Sociology, Pacific Lutheran University, 98447, Tacoma, Washington
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...