Some new techniques for applying the housing unit method of local population estimation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-08

AUTHORS

Stanley K. Smith, Bart B. Lewis

ABSTRACT

The housing unit method of population estimation is often characterized as being imprecise and having an upward bias. We believe that the method itself cannot properly be characterized by a particular level of precision or direction of bias. Only specific techniques of applying the method can have such characteristics. In this paper we discuss several new techniques we have developed for estimating households and the average number of persons per household. Estimates produced by these techniques are compared to estimates produced by several other techniques. Special census results from Florida provide preliminary evidence that the new techniques produce more precise, less biased estimates than the other techniques. More... »

PAGES

323-339

Identifiers

URI

http://scigraph.springernature.com/pub.10.2307/2061106

DOI

http://dx.doi.org/10.2307/2061106

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027807537

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7409280


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Florida", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Housing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methods", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Economics and Bureau of Economic and Business Research, University of Florida, 32611, Gainesville, Florida"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Stanley K.", 
        "id": "sg:person.07607321731.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07607321731.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "The Atlanta Regional Commission, 30303, Atlanta, Georgia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lewis", 
        "givenName": "Bart B.", 
        "id": "sg:person.01336034263.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336034263.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.2307/2060865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007635738", 
          "https://doi.org/10.2307/2060865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2060534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022905587", 
          "https://doi.org/10.2307/2060534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2060025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050973072", 
          "https://doi.org/10.2307/2060025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2060049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069724547", 
          "https://doi.org/10.2307/2060049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2060224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069724593", 
          "https://doi.org/10.2307/2060224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3144467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070209324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3159781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070215321"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-08", 
    "datePublishedReg": "1980-08-01", 
    "description": "The housing unit method of population estimation is often characterized as being imprecise and having an upward bias. We believe that the method itself cannot properly be characterized by a particular level of precision or direction of bias. Only specific techniques of applying the method can have such characteristics. In this paper we discuss several new techniques we have developed for estimating households and the average number of persons per household. Estimates produced by these techniques are compared to estimates produced by several other techniques. Special census results from Florida provide preliminary evidence that the new techniques produce more precise, less biased estimates than the other techniques.", 
    "genre": "research_article", 
    "id": "sg:pub.10.2307/2061106", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1012733", 
        "issn": [
          "0070-3370", 
          "1533-7790"
        ], 
        "name": "Demography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Some new techniques for applying the housing unit method of local population estimation", 
    "pagination": "323-339", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8477d42f6b16430b1bd29dbd856bf63af5446cddf95ba3aa18d39af2c34e7d1c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7409280"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0226703"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.2307/2061106"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027807537"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.2307/2061106", 
      "https://app.dimensions.ai/details/publication/pub.1027807537"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.2307/2061106"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2307/2061106'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2307/2061106'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2307/2061106'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2307/2061106'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      42 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.2307/2061106 schema:about N0c8ea3d16083497b882420bc6fc5e8cb
2 N2466a82ded71416d8dddfb918ed11c71
3 N8ef62057329f4b77b8af093122033433
4 Na7ba57e5a33649c3be6bec6a75585586
5 Nbd71349e59b4426da179836b913cc61e
6 Nf347969d978642caac22e83541e5949e
7 anzsrc-for:14
8 anzsrc-for:1403
9 schema:author N0fb63ee1f89047668a7068f5721ee8c7
10 schema:citation sg:pub.10.2307/2060025
11 sg:pub.10.2307/2060049
12 sg:pub.10.2307/2060224
13 sg:pub.10.2307/2060534
14 sg:pub.10.2307/2060865
15 https://doi.org/10.2307/3144467
16 https://doi.org/10.2307/3159781
17 schema:datePublished 1980-08
18 schema:datePublishedReg 1980-08-01
19 schema:description The housing unit method of population estimation is often characterized as being imprecise and having an upward bias. We believe that the method itself cannot properly be characterized by a particular level of precision or direction of bias. Only specific techniques of applying the method can have such characteristics. In this paper we discuss several new techniques we have developed for estimating households and the average number of persons per household. Estimates produced by these techniques are compared to estimates produced by several other techniques. Special census results from Florida provide preliminary evidence that the new techniques produce more precise, less biased estimates than the other techniques.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N68275992859d4d56abc8772416b99452
24 N9031555f1a7f4a418beb3e603be85c4f
25 sg:journal.1012733
26 schema:name Some new techniques for applying the housing unit method of local population estimation
27 schema:pagination 323-339
28 schema:productId N0d238fd9be42423899d3a0eb30d907be
29 N7872744bfed44987b371718da67af2e2
30 N8ddf9d2ff38f453db638b71910b3eaaa
31 Nb05ec8cb6e8140fda4854b28e2ef7036
32 Nec1ebfae4a334951b9e33e3ba5ce3cb7
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027807537
34 https://doi.org/10.2307/2061106
35 schema:sdDatePublished 2019-04-10T16:39
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N390bea3f7ac04fb8b34981978227397e
38 schema:url http://link.springer.com/10.2307/2061106
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0c8ea3d16083497b882420bc6fc5e8cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
43 schema:name Housing
44 rdf:type schema:DefinedTerm
45 N0d238fd9be42423899d3a0eb30d907be schema:name dimensions_id
46 schema:value pub.1027807537
47 rdf:type schema:PropertyValue
48 N0fb63ee1f89047668a7068f5721ee8c7 rdf:first sg:person.07607321731.48
49 rdf:rest Nc25ffd90aa1e484e9b6db8cbabe894a7
50 N1334bc819fd74e8ea3f1699cee750590 schema:name The Atlanta Regional Commission, 30303, Atlanta, Georgia
51 rdf:type schema:Organization
52 N2466a82ded71416d8dddfb918ed11c71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Statistics as Topic
54 rdf:type schema:DefinedTerm
55 N390bea3f7ac04fb8b34981978227397e schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N68275992859d4d56abc8772416b99452 schema:issueNumber 3
58 rdf:type schema:PublicationIssue
59 N7872744bfed44987b371718da67af2e2 schema:name nlm_unique_id
60 schema:value 0226703
61 rdf:type schema:PropertyValue
62 N8ddf9d2ff38f453db638b71910b3eaaa schema:name readcube_id
63 schema:value 8477d42f6b16430b1bd29dbd856bf63af5446cddf95ba3aa18d39af2c34e7d1c
64 rdf:type schema:PropertyValue
65 N8ef62057329f4b77b8af093122033433 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Florida
67 rdf:type schema:DefinedTerm
68 N9031555f1a7f4a418beb3e603be85c4f schema:volumeNumber 17
69 rdf:type schema:PublicationVolume
70 Na7ba57e5a33649c3be6bec6a75585586 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Methods
72 rdf:type schema:DefinedTerm
73 Nb05ec8cb6e8140fda4854b28e2ef7036 schema:name doi
74 schema:value 10.2307/2061106
75 rdf:type schema:PropertyValue
76 Nbd71349e59b4426da179836b913cc61e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 Nc25ffd90aa1e484e9b6db8cbabe894a7 rdf:first sg:person.01336034263.20
80 rdf:rest rdf:nil
81 Nec1ebfae4a334951b9e33e3ba5ce3cb7 schema:name pubmed_id
82 schema:value 7409280
83 rdf:type schema:PropertyValue
84 Nf347969d978642caac22e83541e5949e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Population
86 rdf:type schema:DefinedTerm
87 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
88 schema:name Economics
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
91 schema:name Econometrics
92 rdf:type schema:DefinedTerm
93 sg:journal.1012733 schema:issn 0070-3370
94 1533-7790
95 schema:name Demography
96 rdf:type schema:Periodical
97 sg:person.01336034263.20 schema:affiliation N1334bc819fd74e8ea3f1699cee750590
98 schema:familyName Lewis
99 schema:givenName Bart B.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336034263.20
101 rdf:type schema:Person
102 sg:person.07607321731.48 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
103 schema:familyName Smith
104 schema:givenName Stanley K.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07607321731.48
106 rdf:type schema:Person
107 sg:pub.10.2307/2060025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050973072
108 https://doi.org/10.2307/2060025
109 rdf:type schema:CreativeWork
110 sg:pub.10.2307/2060049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069724547
111 https://doi.org/10.2307/2060049
112 rdf:type schema:CreativeWork
113 sg:pub.10.2307/2060224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069724593
114 https://doi.org/10.2307/2060224
115 rdf:type schema:CreativeWork
116 sg:pub.10.2307/2060534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022905587
117 https://doi.org/10.2307/2060534
118 rdf:type schema:CreativeWork
119 sg:pub.10.2307/2060865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007635738
120 https://doi.org/10.2307/2060865
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2307/3144467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070209324
123 rdf:type schema:CreativeWork
124 https://doi.org/10.2307/3159781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070215321
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
127 schema:name Department of Economics and Bureau of Economic and Business Research, University of Florida, 32611, Gainesville, Florida
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...