Estimating Long Term Cost Savings from Treatment of Alzheimer’s Disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-08

AUTHORS

Paul Fenn, Alastair Gray

ABSTRACT

OBJECTIVE: This paper puts forward a proposal for a modelling approach to the estimation of long term cost savings from the treatment of Alzheimer's disease (AD). DESIGN: In the proposed modelling approach, disease progression is defined in terms of intervals in the Mini-Mental State Exam (MMSE) scale. Clinical trial data are then used to determine the time at which a particular patient moved into a more severe stage of the disease. By comparing these durations across treatment groups, survival analysis is used to measure the impact of treatment in delaying the onset of a more costly stage of the disease. SETTING: Patients with varying severity of AD. PATIENTS AND PARTICIPANTS: The model uses clinical trial data on 1333 patients recruited internationally in 2 studies from 67 centres. INTERVENTIONS: The aim of these clinical studies was to evaluate the safety and efficacy of 2 non-overlapping dose ranges of rivastigmine relative to placebo over a 26-week treatment period in patients with probable AD. MAIN OUTCOME MEASURES AND RESULTS: The results indicate that the average cost savings with high-dose rivastigmine at the end of the trial period are quite low (approximately 29 Pounds per patient; 1997 values), but by extrapolating to a projected lifetime of 3 years, they rise to approximately 1100 Pounds per patient. The largest long term cost savings from treatment are obtained from treating those in the mild category (i.e. MMSE > 20). However, if the time horizon over which savings are estimated is short (i.e. if life expectancy is below 2 years), more costs are saved by prioritising patients with moderate AD (i.e. MMSE between 20 and 11). CONCLUSIONS: The model is a possible approach for estimating cost savings with treatment of AD, given the lack of long term data on resource use and drug efficacy. Caution should be used when extrapolating the results beyond the original study parameters. More... »

PAGES

165-174

Identifiers

URI

http://scigraph.springernature.com/pub.10.2165/00019053-199916020-00005

DOI

http://dx.doi.org/10.2165/00019053-199916020-00005

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023178941

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10539397


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost Savings", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Economic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "The Business School, University of Nottingham, NG7 2RD, Nottingham, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fenn", 
        "givenName": "Paul", 
        "id": "sg:person.0737110652.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737110652.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Oxford Health Economics Research Centre, Oxford, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gray", 
        "givenName": "Alastair", 
        "id": "sg:person.01307325071.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307325071.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/bmj.318.7184.633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023957622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.1997.00550180013006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025731283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3956(75)90026-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027523106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6296(95)00016-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028174588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199210293271801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034623558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1994.03510370037029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038644959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000106895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050354263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.271.13.985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054156716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1192/bjp.174.1.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064173652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.50.1.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064375785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.50.1.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064375785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.50.1.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064375785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074337694", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-08", 
    "datePublishedReg": "1999-08-01", 
    "description": "OBJECTIVE: This paper puts forward a proposal for a modelling approach to the estimation of long term cost savings from the treatment of Alzheimer's disease (AD).\nDESIGN: In the proposed modelling approach, disease progression is defined in terms of intervals in the Mini-Mental State Exam (MMSE) scale. Clinical trial data are then used to determine the time at which a particular patient moved into a more severe stage of the disease. By comparing these durations across treatment groups, survival analysis is used to measure the impact of treatment in delaying the onset of a more costly stage of the disease.\nSETTING: Patients with varying severity of AD.\nPATIENTS AND PARTICIPANTS: The model uses clinical trial data on 1333 patients recruited internationally in 2 studies from 67 centres.\nINTERVENTIONS: The aim of these clinical studies was to evaluate the safety and efficacy of 2 non-overlapping dose ranges of rivastigmine relative to placebo over a 26-week treatment period in patients with probable AD.\nMAIN OUTCOME MEASURES AND RESULTS: The results indicate that the average cost savings with high-dose rivastigmine at the end of the trial period are quite low (approximately 29 Pounds per patient; 1997 values), but by extrapolating to a projected lifetime of 3 years, they rise to approximately 1100 Pounds per patient. The largest long term cost savings from treatment are obtained from treating those in the mild category (i.e. MMSE > 20). However, if the time horizon over which savings are estimated is short (i.e. if life expectancy is below 2 years), more costs are saved by prioritising patients with moderate AD (i.e. MMSE between 20 and 11).\nCONCLUSIONS: The model is a possible approach for estimating cost savings with treatment of AD, given the lack of long term data on resource use and drug efficacy. Caution should be used when extrapolating the results beyond the original study parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.2165/00019053-199916020-00005", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102812", 
        "issn": [
          "1170-7690", 
          "1179-2027"
        ], 
        "name": "PharmacoEconomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Estimating Long Term Cost Savings from Treatment of Alzheimer\u2019s Disease", 
    "pagination": "165-174", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6e6e13800b3caf8aeb3b40a5232debb9a8c978da8d6fb255d18b759d40d62c01"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10539397"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9212404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.2165/00019053-199916020-00005"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023178941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.2165/00019053-199916020-00005", 
      "https://app.dimensions.ai/details/publication/pub.1023178941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.2165/00019053-199916020-00005"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2165/00019053-199916020-00005'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2165/00019053-199916020-00005'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2165/00019053-199916020-00005'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2165/00019053-199916020-00005'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      45 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.2165/00019053-199916020-00005 schema:about N10ad357c11784c13a82224b97f642b14
2 N6ad24a8e61e948778585aa20a27a1ba7
3 Nac6795d9f44c4d148c9be9af85c628ac
4 Nac71ee79e0764eb9b5f0a1c13be0079d
5 Nbc8e2e0720cf402ead7088e68a60ee02
6 anzsrc-for:11
7 anzsrc-for:1103
8 schema:author Nd0c37f14ae144779ab3fc27cad87e68d
9 schema:citation https://app.dimensions.ai/details/publication/pub.1074337694
10 https://doi.org/10.1001/archneur.1997.00550180013006
11 https://doi.org/10.1001/jama.1994.03510370037029
12 https://doi.org/10.1001/jama.271.13.985
13 https://doi.org/10.1016/0022-3956(75)90026-6
14 https://doi.org/10.1016/0167-6296(95)00016-x
15 https://doi.org/10.1056/nejm199210293271801
16 https://doi.org/10.1136/bmj.318.7184.633
17 https://doi.org/10.1159/000106895
18 https://doi.org/10.1192/bjp.174.1.51
19 https://doi.org/10.1212/wnl.50.1.136
20 schema:datePublished 1999-08
21 schema:datePublishedReg 1999-08-01
22 schema:description OBJECTIVE: This paper puts forward a proposal for a modelling approach to the estimation of long term cost savings from the treatment of Alzheimer's disease (AD). DESIGN: In the proposed modelling approach, disease progression is defined in terms of intervals in the Mini-Mental State Exam (MMSE) scale. Clinical trial data are then used to determine the time at which a particular patient moved into a more severe stage of the disease. By comparing these durations across treatment groups, survival analysis is used to measure the impact of treatment in delaying the onset of a more costly stage of the disease. SETTING: Patients with varying severity of AD. PATIENTS AND PARTICIPANTS: The model uses clinical trial data on 1333 patients recruited internationally in 2 studies from 67 centres. INTERVENTIONS: The aim of these clinical studies was to evaluate the safety and efficacy of 2 non-overlapping dose ranges of rivastigmine relative to placebo over a 26-week treatment period in patients with probable AD. MAIN OUTCOME MEASURES AND RESULTS: The results indicate that the average cost savings with high-dose rivastigmine at the end of the trial period are quite low (approximately 29 Pounds per patient; 1997 values), but by extrapolating to a projected lifetime of 3 years, they rise to approximately 1100 Pounds per patient. The largest long term cost savings from treatment are obtained from treating those in the mild category (i.e. MMSE > 20). However, if the time horizon over which savings are estimated is short (i.e. if life expectancy is below 2 years), more costs are saved by prioritising patients with moderate AD (i.e. MMSE between 20 and 11). CONCLUSIONS: The model is a possible approach for estimating cost savings with treatment of AD, given the lack of long term data on resource use and drug efficacy. Caution should be used when extrapolating the results beyond the original study parameters.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N0edac7ee62bd4362b1297c88f9dcc675
27 N1fa8fe97b20f4912a9605086398c4ae5
28 sg:journal.1102812
29 schema:name Estimating Long Term Cost Savings from Treatment of Alzheimer’s Disease
30 schema:pagination 165-174
31 schema:productId N3a006c8afa474835bfd0eba02f309a9d
32 N3bba9eaadd3a4c8e9ada4cb8e1c710e7
33 N9029bf33818f4768a928bdda9f4ea3e1
34 Nbad3c092a24c468b937f469201ccf3d3
35 Nbdc17b0812074fd78e4a19ae97f3db49
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023178941
37 https://doi.org/10.2165/00019053-199916020-00005
38 schema:sdDatePublished 2019-04-10T15:10
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N47d6024e8f6449f4afcbd94ebb09abf5
41 schema:url http://link.springer.com/10.2165/00019053-199916020-00005
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0edac7ee62bd4362b1297c88f9dcc675 schema:volumeNumber 16
46 rdf:type schema:PublicationVolume
47 N10ad357c11784c13a82224b97f642b14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Humans
49 rdf:type schema:DefinedTerm
50 N1fa8fe97b20f4912a9605086398c4ae5 schema:issueNumber 2
51 rdf:type schema:PublicationIssue
52 N3a006c8afa474835bfd0eba02f309a9d schema:name readcube_id
53 schema:value 6e6e13800b3caf8aeb3b40a5232debb9a8c978da8d6fb255d18b759d40d62c01
54 rdf:type schema:PropertyValue
55 N3bba9eaadd3a4c8e9ada4cb8e1c710e7 schema:name doi
56 schema:value 10.2165/00019053-199916020-00005
57 rdf:type schema:PropertyValue
58 N47d6024e8f6449f4afcbd94ebb09abf5 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N6ad24a8e61e948778585aa20a27a1ba7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Models, Economic
62 rdf:type schema:DefinedTerm
63 N9029bf33818f4768a928bdda9f4ea3e1 schema:name dimensions_id
64 schema:value pub.1023178941
65 rdf:type schema:PropertyValue
66 Nac6795d9f44c4d148c9be9af85c628ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Cost Savings
68 rdf:type schema:DefinedTerm
69 Nac71ee79e0764eb9b5f0a1c13be0079d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Clinical Trials as Topic
71 rdf:type schema:DefinedTerm
72 Nbad3c092a24c468b937f469201ccf3d3 schema:name pubmed_id
73 schema:value 10539397
74 rdf:type schema:PropertyValue
75 Nbc8e2e0720cf402ead7088e68a60ee02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Alzheimer Disease
77 rdf:type schema:DefinedTerm
78 Nbdc17b0812074fd78e4a19ae97f3db49 schema:name nlm_unique_id
79 schema:value 9212404
80 rdf:type schema:PropertyValue
81 Ncc5ae6ad7a51483cb159f725cdfdb989 rdf:first sg:person.01307325071.02
82 rdf:rest rdf:nil
83 Nd0c37f14ae144779ab3fc27cad87e68d rdf:first sg:person.0737110652.20
84 rdf:rest Ncc5ae6ad7a51483cb159f725cdfdb989
85 Nd4a50416412544db9981d27d315cb982 schema:name Oxford Health Economics Research Centre, Oxford, England
86 rdf:type schema:Organization
87 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
88 schema:name Medical and Health Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
91 schema:name Clinical Sciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1102812 schema:issn 1170-7690
94 1179-2027
95 schema:name PharmacoEconomics
96 rdf:type schema:Periodical
97 sg:person.01307325071.02 schema:affiliation Nd4a50416412544db9981d27d315cb982
98 schema:familyName Gray
99 schema:givenName Alastair
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307325071.02
101 rdf:type schema:Person
102 sg:person.0737110652.20 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
103 schema:familyName Fenn
104 schema:givenName Paul
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737110652.20
106 rdf:type schema:Person
107 https://app.dimensions.ai/details/publication/pub.1074337694 schema:CreativeWork
108 https://doi.org/10.1001/archneur.1997.00550180013006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025731283
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1001/jama.1994.03510370037029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038644959
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1001/jama.271.13.985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054156716
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0022-3956(75)90026-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027523106
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0167-6296(95)00016-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028174588
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1056/nejm199210293271801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034623558
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1136/bmj.318.7184.633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023957622
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1159/000106895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050354263
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1192/bjp.174.1.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064173652
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1212/wnl.50.1.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064375785
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
129 schema:name The Business School, University of Nottingham, NG7 2RD, Nottingham, England
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...