Are Population Pharmacokinetic and/ or Pharmacodynamic Models Adequately Evaluated? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007

AUTHORS

Karl Brendel, Céline Dartois, Emmanuelle Comets, Annabelle Lemenuel-Diot, Christian Laveille, Brigitte Tranchand, Pascal Girard, Céline M. Laffont, France Mentré

ABSTRACT

Model evaluation is an important issue in population analyses. We aimed to perform a systematic review of all population pharmacokinetic and/or pharmacodynamic analyses published between 2002 and 2004 to survey the current methods used to evaluate models and to assess whether those models were adequately evaluated.We selected 324 articles in MEDLINE using defined key words and built a data abstraction form composed of a checklist of items to extract the relevant information from these articles with respect to model evaluation. In the data abstraction form, evaluation methods were divided into three subsections: basic internal methods (goodness-of-fit [GOF] plots, uncertainty in parameter estimates and model sensitivity), advanced internal methods (data splitting, resampling techniques and Monte Carlo simulations) and external model evaluation.Basic internal evaluation was the most frequently described method in the reports: 65% of the models involved GOF evaluation. Standard errors or confidence intervals were reported for 50% of fixed effects but only for 22% of random effects. Advanced internal methods were used in approximately 25% of models: data splitting was more often used than bootstrap and cross-validation; simulations were used in 6% of models to evaluate models by a visual predictive check or by a posterior predictive check. External evaluation was performed in only 7% of models.Using the subjective synthesis of model evaluation for each article, we judged the models to be adequately evaluated in 28% of pharmacokinetic models and 26% of pharmacodynamic models. Basic internal evaluation was preferred to more advanced methods, probably because the former is performed easily with most software. We also noticed that when the aim of modelling was predictive, advanced internal methods or more stringent methods were more often used. More... »

PAGES

221-234

References to SciGraph publications

  • 2005-06. Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam in INVESTIGATIONAL NEW DRUGS
  • 2003-12-12. Pharmacokinetic modelling of valproic acid from routine clinical data in Egyptian epileptic patients in EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY
  • 2003-08. Comparison of the Pharmacokinetics of S-1, an Oral Anticancer Agent, in Western and Japanese Patients in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2000-11. Optimizing the Science of Drug Development: Opportunities for Better Candidate Selection and Accelerated Evaluation in Humans in PHARMACEUTICAL RESEARCH
  • 2005-09. A new equivalence based metric for predictive check to qualify mixed-effects models in THE AAPS JOURNAL
  • 2002-08. Clinical Trial Simulation Using Therapeutic Effect Modeling: Application to Ivabradine Efficacy in Patients with Angina Pectoris in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2001-04. Evaluating Pharmacokinetic/Pharmacodynamic Models Using the Posterior Predictive Check in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2005-11-13. Prediction Discrepancies for the Evaluation of Nonlinear Mixed-Effects Models in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2005-08. Population Pharmacokinetics of the Active Metabolite of Leflunomide in Pediatric Subjects with Polyarticular Course Juvenile Rheumatoid Arthritis in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2005-04. Modelling a Spontaneously Reported Side Effect by Use of a Markov Mixed-Effects Model in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2002-07-16. Population pharmacokinetic and limited sampling models for carboplatin administered in high-dose combination regimens with peripheral blood stem cell support in CANCER CHEMOTHERAPY AND PHARMACOLOGY
  • 2005-06. A guide for reporting the results of population pharmacokinetic analyses: A Swedish perspective in THE AAPS JOURNAL
  • 1999-12-01. A Population Pharmacokinetic–Pharmacodynamic Analysis of Repeated Measures Time-to-Event Pharmacodynamic Responses: The Antiemetic Effect of Ondansetron in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2004-01. Population Pharmacokinetics of Sibrotuzumab, A Novel Therapeutic Monoclonal Antibody, in Cancer Patients in INVESTIGATIONAL NEW DRUGS
  • 1986-10-01. Analysis of pharmacokinetic data using parametric models. III. Hypothesis tests and confidence intervals in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.2165/00003088-200746030-00003

    DOI

    http://dx.doi.org/10.2165/00003088-200746030-00003

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046117292

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17328581


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pharmacology and Pharmaceutical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Monte Carlo Method", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pharmacokinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Population", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "AP-HP, H\u00f4pital Bichat, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.411119.d", 
              "name": [
                "INSERM U738, 46 rue Henri Huchard, 75018, Paris, France", 
                "Universit\u00e9 Paris 7, Paris, France", 
                "AP-HP, H\u00f4pital Bichat, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brendel", 
            "givenName": "Karl", 
            "id": "sg:person.01255515561.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255515561.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EA 3738, CTO, Facult\u00e9 de M\u00e9dicine Lyon sud, Universit\u00e9 Lyon 1, Oullins, France", 
              "id": "http://www.grid.ac/institutes/grid.7849.2", 
              "name": [
                "EA 3738, CTO, Facult\u00e9 de M\u00e9dicine Lyon sud, Universit\u00e9 Lyon 1, Oullins, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dartois", 
            "givenName": "C\u00e9line", 
            "id": "sg:person.01316057001.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316057001.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AP-HP, H\u00f4pital Bichat, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.411119.d", 
              "name": [
                "INSERM U738, 46 rue Henri Huchard, 75018, Paris, France", 
                "Universit\u00e9 Paris 7, Paris, France", 
                "AP-HP, H\u00f4pital Bichat, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Comets", 
            "givenName": "Emmanuelle", 
            "id": "sg:person.01323630761.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323630761.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Recherches Internationales Servier, Courbevoie, France", 
              "id": "http://www.grid.ac/institutes/grid.418301.f", 
              "name": [
                "Institut de Recherches Internationales Servier, Courbevoie, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lemenuel-Diot", 
            "givenName": "Annabelle", 
            "id": "sg:person.01317146273.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317146273.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Exprimo NV, Lummen, Belgium", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Exprimo NV, Lummen, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Laveille", 
            "givenName": "Christian", 
            "id": "sg:person.01365261473.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365261473.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre-L\u00e9on-B\u00e9rard, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.418116.b", 
              "name": [
                "EA 3738, CTO, Facult\u00e9 de M\u00e9dicine Lyon sud, Universit\u00e9 Lyon 1, Oullins, France", 
                "Centre-L\u00e9on-B\u00e9rard, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tranchand", 
            "givenName": "Brigitte", 
            "id": "sg:person.01106136341.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106136341.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INSERM, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.457382.f", 
              "name": [
                "EA 3738, CTO, Facult\u00e9 de M\u00e9dicine Lyon sud, Universit\u00e9 Lyon 1, Oullins, France", 
                "INSERM, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Girard", 
            "givenName": "Pascal", 
            "id": "sg:person.012661201622.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Recherches Internationales Servier, Courbevoie, France", 
              "id": "http://www.grid.ac/institutes/grid.418301.f", 
              "name": [
                "Institut de Recherches Internationales Servier, Courbevoie, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Laffont", 
            "givenName": "C\u00e9line M.", 
            "id": "sg:person.01237321772.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237321772.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "AP-HP, H\u00f4pital Bichat, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.411119.d", 
              "name": [
                "INSERM U738, 46 rue Henri Huchard, 75018, Paris, France", 
                "Universit\u00e9 Paris 7, Paris, France", 
                "AP-HP, H\u00f4pital Bichat, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mentr\u00e9", 
            "givenName": "France", 
            "id": "sg:person.0722247775.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722247775.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1208/aapsj070245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037791975", 
              "https://doi.org/10.1208/aapsj070245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10928-005-0016-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015863917", 
              "https://doi.org/10.1007/s10928-005-0016-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10928-005-0049-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025743203", 
              "https://doi.org/10.1007/s10928-005-0049-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020953107162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038688629", 
              "https://doi.org/10.1023/a:1020953107162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:drug.0000006173.72210.1c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019781625", 
              "https://doi.org/10.1023/b:drug.0000006173.72210.1c"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01059660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044861626", 
              "https://doi.org/10.1007/bf01059660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007574217260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017413343", 
              "https://doi.org/10.1023/a:1007574217260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020930626404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018407227", 
              "https://doi.org/10.1023/a:1020930626404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10637-005-6730-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012725203", 
              "https://doi.org/10.1007/s10637-005-6730-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10928-005-0021-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017453144", 
              "https://doi.org/10.1007/s10928-005-0021-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1208/aapsj070353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008061840", 
              "https://doi.org/10.1208/aapsj070353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00228-003-0699-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003962799", 
              "https://doi.org/10.1007/s00228-003-0699-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011555016423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032175473", 
              "https://doi.org/10.1023/a:1011555016423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00280-002-0490-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019809804", 
              "https://doi.org/10.1007/s00280-002-0490-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026142601822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011031340", 
              "https://doi.org/10.1023/a:1026142601822"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007", 
        "datePublishedReg": "2007-01-01", 
        "description": "Model evaluation is an important issue in population analyses. We aimed to perform a systematic review of all population pharmacokinetic and/or pharmacodynamic analyses published between 2002 and 2004 to survey the current methods used to evaluate models and to assess whether those models were adequately evaluated.We selected 324 articles in MEDLINE using defined key words and built a data abstraction form composed of a checklist of items to extract the relevant information from these articles with respect to model evaluation. In the data abstraction form, evaluation methods were divided into three subsections: basic internal methods (goodness-of-fit [GOF] plots, uncertainty in parameter estimates and model sensitivity), advanced internal methods (data splitting, resampling techniques and Monte Carlo simulations) and external model evaluation.Basic internal evaluation was the most frequently described method in the reports: 65% of the models involved GOF evaluation. Standard errors or confidence intervals were reported for 50% of fixed effects but only for 22% of random effects. Advanced internal methods were used in approximately 25% of models: data splitting was more often used than bootstrap and cross-validation; simulations were used in 6% of models to evaluate models by a visual predictive check or by a posterior predictive check. External evaluation was performed in only 7% of models.Using the subjective synthesis of model evaluation for each article, we judged the models to be adequately evaluated in 28% of pharmacokinetic models and 26% of pharmacodynamic models. Basic internal evaluation was preferred to more advanced methods, probably because the former is performed easily with most software. We also noticed that when the aim of modelling was predictive, advanced internal methods or more stringent methods were more often used.", 
        "genre": "article", 
        "id": "sg:pub.10.2165/00003088-200746030-00003", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1085321", 
            "issn": [
              "0312-5963", 
              "1179-1926"
            ], 
            "name": "Clinical Pharmacokinetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "46"
          }
        ], 
        "keywords": [
          "posterior predictive checks", 
          "model evaluation", 
          "aim of modelling", 
          "predictive checks", 
          "random effects", 
          "internal methods", 
          "data splitting", 
          "standard error", 
          "advanced methods", 
          "model", 
          "current methods", 
          "population analysis", 
          "simulations", 
          "modelling", 
          "error", 
          "most software", 
          "important issue", 
          "splitting", 
          "pharmacodynamic model", 
          "form", 
          "confidence intervals", 
          "respect", 
          "analysis", 
          "pharmacokinetic model", 
          "evaluation method", 
          "check", 
          "software", 
          "article", 
          "interval", 
          "subsections", 
          "information", 
          "effect", 
          "relevant information", 
          "stringent method", 
          "evaluation", 
          "issues", 
          "data abstraction form", 
          "abstraction form", 
          "visual predictive check", 
          "pharmacodynamic analysis", 
          "aim", 
          "systematic review", 
          "words", 
          "external model evaluation", 
          "items", 
          "synthesis", 
          "key words", 
          "checklist of items", 
          "population", 
          "MEDLINE", 
          "internal evaluation", 
          "review", 
          "subjective synthesis", 
          "and/", 
          "checklist", 
          "report", 
          "external evaluation", 
          "method"
        ], 
        "name": "Are Population Pharmacokinetic and/ or Pharmacodynamic Models Adequately Evaluated?", 
        "pagination": "221-234", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046117292"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.2165/00003088-200746030-00003"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17328581"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.2165/00003088-200746030-00003", 
          "https://app.dimensions.ai/details/publication/pub.1046117292"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_443.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.2165/00003088-200746030-00003"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.2165/00003088-200746030-00003'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.2165/00003088-200746030-00003'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.2165/00003088-200746030-00003'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.2165/00003088-200746030-00003'


     

    This table displays all metadata directly associated to this object as RDF triples.

    282 TRIPLES      21 PREDICATES      105 URIs      82 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.2165/00003088-200746030-00003 schema:about N0514808de830421789bfe27c27c8fdb2
    2 N20320caef206452aa413288aefa34904
    3 N35dec7024f604293892f69242e477361
    4 N416fc34aeac64bbf95bbd6c36bce94fc
    5 N88f39b1dfe8740f3b69f091a5016e1fc
    6 N95a53d995eca4ad7a6af4e916215785c
    7 Nd7536688c2d14ad89069c947cf7e161e
    8 anzsrc-for:11
    9 anzsrc-for:1115
    10 schema:author N6e2627f53e8b4f789275f529b0ebb939
    11 schema:citation sg:pub.10.1007/bf01059660
    12 sg:pub.10.1007/s00228-003-0699-7
    13 sg:pub.10.1007/s00280-002-0490-y
    14 sg:pub.10.1007/s10637-005-6730-3
    15 sg:pub.10.1007/s10928-005-0016-4
    16 sg:pub.10.1007/s10928-005-0021-7
    17 sg:pub.10.1007/s10928-005-0049-8
    18 sg:pub.10.1023/a:1007574217260
    19 sg:pub.10.1023/a:1011555016423
    20 sg:pub.10.1023/a:1020930626404
    21 sg:pub.10.1023/a:1020953107162
    22 sg:pub.10.1023/a:1026142601822
    23 sg:pub.10.1023/b:drug.0000006173.72210.1c
    24 sg:pub.10.1208/aapsj070245
    25 sg:pub.10.1208/aapsj070353
    26 schema:datePublished 2007
    27 schema:datePublishedReg 2007-01-01
    28 schema:description Model evaluation is an important issue in population analyses. We aimed to perform a systematic review of all population pharmacokinetic and/or pharmacodynamic analyses published between 2002 and 2004 to survey the current methods used to evaluate models and to assess whether those models were adequately evaluated.We selected 324 articles in MEDLINE using defined key words and built a data abstraction form composed of a checklist of items to extract the relevant information from these articles with respect to model evaluation. In the data abstraction form, evaluation methods were divided into three subsections: basic internal methods (goodness-of-fit [GOF] plots, uncertainty in parameter estimates and model sensitivity), advanced internal methods (data splitting, resampling techniques and Monte Carlo simulations) and external model evaluation.Basic internal evaluation was the most frequently described method in the reports: 65% of the models involved GOF evaluation. Standard errors or confidence intervals were reported for 50% of fixed effects but only for 22% of random effects. Advanced internal methods were used in approximately 25% of models: data splitting was more often used than bootstrap and cross-validation; simulations were used in 6% of models to evaluate models by a visual predictive check or by a posterior predictive check. External evaluation was performed in only 7% of models.Using the subjective synthesis of model evaluation for each article, we judged the models to be adequately evaluated in 28% of pharmacokinetic models and 26% of pharmacodynamic models. Basic internal evaluation was preferred to more advanced methods, probably because the former is performed easily with most software. We also noticed that when the aim of modelling was predictive, advanced internal methods or more stringent methods were more often used.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N5f86ac64b16d444cba3123b7e737ff01
    32 N7919d7b13e364e2b94a561af713b2b03
    33 sg:journal.1085321
    34 schema:keywords MEDLINE
    35 abstraction form
    36 advanced methods
    37 aim
    38 aim of modelling
    39 analysis
    40 and/
    41 article
    42 check
    43 checklist
    44 checklist of items
    45 confidence intervals
    46 current methods
    47 data abstraction form
    48 data splitting
    49 effect
    50 error
    51 evaluation
    52 evaluation method
    53 external evaluation
    54 external model evaluation
    55 form
    56 important issue
    57 information
    58 internal evaluation
    59 internal methods
    60 interval
    61 issues
    62 items
    63 key words
    64 method
    65 model
    66 model evaluation
    67 modelling
    68 most software
    69 pharmacodynamic analysis
    70 pharmacodynamic model
    71 pharmacokinetic model
    72 population
    73 population analysis
    74 posterior predictive checks
    75 predictive checks
    76 random effects
    77 relevant information
    78 report
    79 respect
    80 review
    81 simulations
    82 software
    83 splitting
    84 standard error
    85 stringent method
    86 subjective synthesis
    87 subsections
    88 synthesis
    89 systematic review
    90 visual predictive check
    91 words
    92 schema:name Are Population Pharmacokinetic and/ or Pharmacodynamic Models Adequately Evaluated?
    93 schema:pagination 221-234
    94 schema:productId N497dd1e0e14840efa8dc322744a27ac3
    95 N8cb4b06ea040484584c7fc5306e0d309
    96 Nf45dd55828ca4be0adedcefc45452e2c
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046117292
    98 https://doi.org/10.2165/00003088-200746030-00003
    99 schema:sdDatePublished 2022-10-01T06:34
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N16c7ee36b08a4f07b4d940aad2244ada
    102 schema:url https://doi.org/10.2165/00003088-200746030-00003
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N0514808de830421789bfe27c27c8fdb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Monte Carlo Method
    108 rdf:type schema:DefinedTerm
    109 N16c7ee36b08a4f07b4d940aad2244ada schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N1f0eede4f4184ba092dc3cc9dd49f113 rdf:first sg:person.01365261473.45
    112 rdf:rest N6c2fe47b2cb7408194238399f0f99de9
    113 N20320caef206452aa413288aefa34904 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Models, Statistical
    115 rdf:type schema:DefinedTerm
    116 N2cb4dd5a95fc4ca7b4aebf78687f7f2a rdf:first sg:person.012661201622.56
    117 rdf:rest N8bbc898744fd47cd899e0ff5db2dde67
    118 N35dec7024f604293892f69242e477361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Animals
    120 rdf:type schema:DefinedTerm
    121 N416fc34aeac64bbf95bbd6c36bce94fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Pharmacokinetics
    123 rdf:type schema:DefinedTerm
    124 N497dd1e0e14840efa8dc322744a27ac3 schema:name pubmed_id
    125 schema:value 17328581
    126 rdf:type schema:PropertyValue
    127 N5f86ac64b16d444cba3123b7e737ff01 schema:volumeNumber 46
    128 rdf:type schema:PublicationVolume
    129 N65a0fb2a4bac473985a7f56bab315939 rdf:first sg:person.01317146273.01
    130 rdf:rest N1f0eede4f4184ba092dc3cc9dd49f113
    131 N6c2fe47b2cb7408194238399f0f99de9 rdf:first sg:person.01106136341.12
    132 rdf:rest N2cb4dd5a95fc4ca7b4aebf78687f7f2a
    133 N6e2627f53e8b4f789275f529b0ebb939 rdf:first sg:person.01255515561.19
    134 rdf:rest Na285e4813e1849b48800803b6a71bcaf
    135 N78d396bd933f4598a0eccc5cfd8d26fe rdf:first sg:person.0722247775.85
    136 rdf:rest rdf:nil
    137 N7919d7b13e364e2b94a561af713b2b03 schema:issueNumber 3
    138 rdf:type schema:PublicationIssue
    139 N88f39b1dfe8740f3b69f091a5016e1fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Databases, Factual
    141 rdf:type schema:DefinedTerm
    142 N8bbc898744fd47cd899e0ff5db2dde67 rdf:first sg:person.01237321772.11
    143 rdf:rest N78d396bd933f4598a0eccc5cfd8d26fe
    144 N8cb4b06ea040484584c7fc5306e0d309 schema:name doi
    145 schema:value 10.2165/00003088-200746030-00003
    146 rdf:type schema:PropertyValue
    147 N95a53d995eca4ad7a6af4e916215785c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Population
    149 rdf:type schema:DefinedTerm
    150 Na285e4813e1849b48800803b6a71bcaf rdf:first sg:person.01316057001.60
    151 rdf:rest Neeae3cf48cbf4ca99551e593f34b386b
    152 Nd7536688c2d14ad89069c947cf7e161e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Humans
    154 rdf:type schema:DefinedTerm
    155 Neeae3cf48cbf4ca99551e593f34b386b rdf:first sg:person.01323630761.39
    156 rdf:rest N65a0fb2a4bac473985a7f56bab315939
    157 Nf45dd55828ca4be0adedcefc45452e2c schema:name dimensions_id
    158 schema:value pub.1046117292
    159 rdf:type schema:PropertyValue
    160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Medical and Health Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Pharmacology and Pharmaceutical Sciences
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1085321 schema:issn 0312-5963
    167 1179-1926
    168 schema:name Clinical Pharmacokinetics
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.01106136341.12 schema:affiliation grid-institutes:grid.418116.b
    172 schema:familyName Tranchand
    173 schema:givenName Brigitte
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106136341.12
    175 rdf:type schema:Person
    176 sg:person.01237321772.11 schema:affiliation grid-institutes:grid.418301.f
    177 schema:familyName Laffont
    178 schema:givenName Céline M.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237321772.11
    180 rdf:type schema:Person
    181 sg:person.01255515561.19 schema:affiliation grid-institutes:grid.411119.d
    182 schema:familyName Brendel
    183 schema:givenName Karl
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255515561.19
    185 rdf:type schema:Person
    186 sg:person.012661201622.56 schema:affiliation grid-institutes:grid.457382.f
    187 schema:familyName Girard
    188 schema:givenName Pascal
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56
    190 rdf:type schema:Person
    191 sg:person.01316057001.60 schema:affiliation grid-institutes:grid.7849.2
    192 schema:familyName Dartois
    193 schema:givenName Céline
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316057001.60
    195 rdf:type schema:Person
    196 sg:person.01317146273.01 schema:affiliation grid-institutes:grid.418301.f
    197 schema:familyName Lemenuel-Diot
    198 schema:givenName Annabelle
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317146273.01
    200 rdf:type schema:Person
    201 sg:person.01323630761.39 schema:affiliation grid-institutes:grid.411119.d
    202 schema:familyName Comets
    203 schema:givenName Emmanuelle
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323630761.39
    205 rdf:type schema:Person
    206 sg:person.01365261473.45 schema:affiliation grid-institutes:None
    207 schema:familyName Laveille
    208 schema:givenName Christian
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365261473.45
    210 rdf:type schema:Person
    211 sg:person.0722247775.85 schema:affiliation grid-institutes:grid.411119.d
    212 schema:familyName Mentré
    213 schema:givenName France
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722247775.85
    215 rdf:type schema:Person
    216 sg:pub.10.1007/bf01059660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044861626
    217 https://doi.org/10.1007/bf01059660
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s00228-003-0699-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003962799
    220 https://doi.org/10.1007/s00228-003-0699-7
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s00280-002-0490-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019809804
    223 https://doi.org/10.1007/s00280-002-0490-y
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s10637-005-6730-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012725203
    226 https://doi.org/10.1007/s10637-005-6730-3
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s10928-005-0016-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015863917
    229 https://doi.org/10.1007/s10928-005-0016-4
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s10928-005-0021-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017453144
    232 https://doi.org/10.1007/s10928-005-0021-7
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s10928-005-0049-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025743203
    235 https://doi.org/10.1007/s10928-005-0049-8
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1023/a:1007574217260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017413343
    238 https://doi.org/10.1023/a:1007574217260
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1023/a:1011555016423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032175473
    241 https://doi.org/10.1023/a:1011555016423
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1023/a:1020930626404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018407227
    244 https://doi.org/10.1023/a:1020930626404
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1023/a:1020953107162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038688629
    247 https://doi.org/10.1023/a:1020953107162
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1023/a:1026142601822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011031340
    250 https://doi.org/10.1023/a:1026142601822
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1023/b:drug.0000006173.72210.1c schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781625
    253 https://doi.org/10.1023/b:drug.0000006173.72210.1c
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1208/aapsj070245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037791975
    256 https://doi.org/10.1208/aapsj070245
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1208/aapsj070353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008061840
    259 https://doi.org/10.1208/aapsj070353
    260 rdf:type schema:CreativeWork
    261 grid-institutes:None schema:alternateName Exprimo NV, Lummen, Belgium
    262 schema:name Exprimo NV, Lummen, Belgium
    263 rdf:type schema:Organization
    264 grid-institutes:grid.411119.d schema:alternateName AP-HP, Hôpital Bichat, Paris, France
    265 schema:name AP-HP, Hôpital Bichat, Paris, France
    266 INSERM U738, 46 rue Henri Huchard, 75018, Paris, France
    267 Université Paris 7, Paris, France
    268 rdf:type schema:Organization
    269 grid-institutes:grid.418116.b schema:alternateName Centre-Léon-Bérard, Lyon, France
    270 schema:name Centre-Léon-Bérard, Lyon, France
    271 EA 3738, CTO, Faculté de Médicine Lyon sud, Université Lyon 1, Oullins, France
    272 rdf:type schema:Organization
    273 grid-institutes:grid.418301.f schema:alternateName Institut de Recherches Internationales Servier, Courbevoie, France
    274 schema:name Institut de Recherches Internationales Servier, Courbevoie, France
    275 rdf:type schema:Organization
    276 grid-institutes:grid.457382.f schema:alternateName INSERM, Lyon, France
    277 schema:name EA 3738, CTO, Faculté de Médicine Lyon sud, Université Lyon 1, Oullins, France
    278 INSERM, Lyon, France
    279 rdf:type schema:Organization
    280 grid-institutes:grid.7849.2 schema:alternateName EA 3738, CTO, Faculté de Médicine Lyon sud, Université Lyon 1, Oullins, France
    281 schema:name EA 3738, CTO, Faculté de Médicine Lyon sud, Université Lyon 1, Oullins, France
    282 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...