Torsion Groups of a Family of Elliptic Curves Over Number Fields View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07-24

AUTHORS

Pallab Kanti Dey

ABSTRACT

We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form E: y2 = x3 + c, where c is an integer.

PAGES

161-171

References to SciGraph publications

  • 1992-12. Torsion points on elliptic curves andq-coefficients of modular forms in INVENTIONES MATHEMATICAE
  • 1974-06. Points of finite order on elliptic curves with complex multiplication in MANUSCRIPTA MATHEMATICA
  • 1977-12. Modular curves and the eisenstein ideal in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.21136/cmj.2018.0214-17

    DOI

    http://dx.doi.org/10.21136/cmj.2018.0214-17

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105826209


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harish-Chandra Research Institute, Chhatnag Road, 211019, Jhunsi, Allahabad, India", 
              "id": "http://www.grid.ac/institutes/grid.450311.2", 
              "name": [
                "Harish-Chandra Research Institute, Chhatnag Road, 211019, Jhunsi, Allahabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dey", 
            "givenName": "Pallab Kanti", 
            "id": "sg:person.016062627531.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016062627531.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02684339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021038002", 
              "https://doi.org/10.1007/bf02684339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01171442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053030948", 
              "https://doi.org/10.1007/bf01171442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038407561", 
              "https://doi.org/10.1007/bf01232025"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-24", 
        "datePublishedReg": "2018-07-24", 
        "description": "We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form E: y2 = x3 + c, where c is an integer.", 
        "genre": "article", 
        "id": "sg:pub.10.21136/cmj.2018.0214-17", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1135981", 
            "issn": [
              "0011-4642", 
              "1572-9141"
            ], 
            "name": "Czechoslovak Mathematical Journal", 
            "publisher": "Institute of Mathematics, Czech Academy of Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "69"
          }
        ], 
        "keywords": [
          "elliptic curves", 
          "number field", 
          "torsion group", 
          "degree coprime", 
          "quadratic fields", 
          "form E", 
          "coprime", 
          "integers", 
          "X3", 
          "Y2", 
          "field", 
          "curves", 
          "family", 
          "group"
        ], 
        "name": "Torsion Groups of a Family of Elliptic Curves Over Number Fields", 
        "pagination": "161-171", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105826209"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.21136/cmj.2018.0214-17"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.21136/cmj.2018.0214-17", 
          "https://app.dimensions.ai/details/publication/pub.1105826209"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_765.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.21136/cmj.2018.0214-17"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.21136/cmj.2018.0214-17'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.21136/cmj.2018.0214-17'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.21136/cmj.2018.0214-17'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.21136/cmj.2018.0214-17'


     

    This table displays all metadata directly associated to this object as RDF triples.

    84 TRIPLES      22 PREDICATES      42 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.21136/cmj.2018.0214-17 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N56004eda970b4e5b81b6b6e4a8343d63
    4 schema:citation sg:pub.10.1007/bf01171442
    5 sg:pub.10.1007/bf01232025
    6 sg:pub.10.1007/bf02684339
    7 schema:datePublished 2018-07-24
    8 schema:datePublishedReg 2018-07-24
    9 schema:description We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form E: y2 = x3 + c, where c is an integer.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N8d5e868eee674839a4661f62abcc80d2
    14 N8d8687c93df8417991294516cb805424
    15 sg:journal.1135981
    16 schema:keywords X3
    17 Y2
    18 coprime
    19 curves
    20 degree coprime
    21 elliptic curves
    22 family
    23 field
    24 form E
    25 group
    26 integers
    27 number field
    28 quadratic fields
    29 torsion group
    30 schema:name Torsion Groups of a Family of Elliptic Curves Over Number Fields
    31 schema:pagination 161-171
    32 schema:productId N242c8cc9615b4106840a3cc6f6d6ee0e
    33 Nf91235cc68834276a9e68637c3e85247
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105826209
    35 https://doi.org/10.21136/cmj.2018.0214-17
    36 schema:sdDatePublished 2021-12-01T19:42
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Na51ef604169841e299cf8c95781fc1a5
    39 schema:url https://doi.org/10.21136/cmj.2018.0214-17
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N242c8cc9615b4106840a3cc6f6d6ee0e schema:name dimensions_id
    44 schema:value pub.1105826209
    45 rdf:type schema:PropertyValue
    46 N56004eda970b4e5b81b6b6e4a8343d63 rdf:first sg:person.016062627531.04
    47 rdf:rest rdf:nil
    48 N8d5e868eee674839a4661f62abcc80d2 schema:volumeNumber 69
    49 rdf:type schema:PublicationVolume
    50 N8d8687c93df8417991294516cb805424 schema:issueNumber 1
    51 rdf:type schema:PublicationIssue
    52 Na51ef604169841e299cf8c95781fc1a5 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Nf91235cc68834276a9e68637c3e85247 schema:name doi
    55 schema:value 10.21136/cmj.2018.0214-17
    56 rdf:type schema:PropertyValue
    57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Mathematical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Pure Mathematics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1135981 schema:issn 0011-4642
    64 1572-9141
    65 schema:name Czechoslovak Mathematical Journal
    66 schema:publisher Institute of Mathematics, Czech Academy of Sciences
    67 rdf:type schema:Periodical
    68 sg:person.016062627531.04 schema:affiliation grid-institutes:grid.450311.2
    69 schema:familyName Dey
    70 schema:givenName Pallab Kanti
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016062627531.04
    72 rdf:type schema:Person
    73 sg:pub.10.1007/bf01171442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053030948
    74 https://doi.org/10.1007/bf01171442
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf01232025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038407561
    77 https://doi.org/10.1007/bf01232025
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02684339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021038002
    80 https://doi.org/10.1007/bf02684339
    81 rdf:type schema:CreativeWork
    82 grid-institutes:grid.450311.2 schema:alternateName Harish-Chandra Research Institute, Chhatnag Road, 211019, Jhunsi, Allahabad, India
    83 schema:name Harish-Chandra Research Institute, Chhatnag Road, 211019, Jhunsi, Allahabad, India
    84 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...