Comparison of different cellular structures for the design of selective laser melting parts through the application of a new lightweight ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Rubén Paz, Mario D. Monzón, Philippe Bertrand, Alexey Sova

ABSTRACT

Interest in lightweight geometries and cellular structures has increased due to the freeform capabilities of additive manufacturing technologies. In this paper, six different cellular structures were designed and parameterised with three design variables to carry out the lightweight optimisation of an initial solid sample. According to the limitations of conventional computer-aided design (CAD) software, a new parametric optimisation method was implemented and used to optimise these six types of structures. The best one in terms of optimisation time and stiffness was parameterised with nine design variables, changing the dimensions of the internal cellular structure and the reinforcement zones. These seven optimised geometries were manufactured in a Phenix ProX200 selective laser melting machine without using support. The samples obtained were tested under flexural load. The results show that the cubic cell structures have some advantages in terms of CAD definition, parameterisation and optimisation time because of their simpler geometry. However, from the flexural test results it can be concluded that this type of cell structure and those with horizontal bars experience a loss of stiffness compared to the estimates of the finite element analysis because of imperfections in the manufacturing process of hanging structures. More... »

PAGES

117-132

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1631/jzus.a1800422

DOI

http://dx.doi.org/10.1631/jzus.a1800422

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111493459


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Las Palmas de Gran Canaria", 
          "id": "https://www.grid.ac/institutes/grid.4521.2", 
          "name": [
            "Universidad de Las Palmas de Gran Canaria, Departamento de Ingenier\u00eda Mec\u00e1nica, 35017, Las Palmas de Gran Canaria, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paz", 
        "givenName": "Rub\u00e9n", 
        "id": "sg:person.015310413577.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310413577.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Las Palmas de Gran Canaria", 
          "id": "https://www.grid.ac/institutes/grid.4521.2", 
          "name": [
            "Universidad de Las Palmas de Gran Canaria, Departamento de Ingenier\u00eda Mec\u00e1nica, 35017, Las Palmas de Gran Canaria, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monz\u00f3n", 
        "givenName": "Mario D.", 
        "id": "sg:person.012426424476.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012426424476.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Nationale d'Ing\u00e9nieurs de Saint-Etienne", 
          "id": "https://www.grid.ac/institutes/grid.434191.a", 
          "name": [
            "University of Lyon, ENISE, LTDS CNRS UMR 5513, 42023, Saint-Etienne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertrand", 
        "givenName": "Philippe", 
        "id": "sg:person.07377270007.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377270007.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Nationale d'Ing\u00e9nieurs de Saint-Etienne", 
          "id": "https://www.grid.ac/institutes/grid.434191.a", 
          "name": [
            "University of Lyon, ENISE, LTDS CNRS UMR 5513, 42023, Saint-Etienne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sova", 
        "givenName": "Alexey", 
        "id": "sg:person.012614161133.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012614161133.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jbm.b.31219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000411571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07853890701881788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000650422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2010.0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002559711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-1305.2008.00498.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007286230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2004.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010399606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(01)00744-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011737500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12541-011-0008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014979043", 
          "https://doi.org/10.1007/s12541-011-0008-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02644400110387640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019151083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/10432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019580865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030861744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmbbm.2016.04.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034026048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2004.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036482994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17452759.2013.837629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044741923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4935926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047713737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/107632701753337645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059205999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405412463857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063882581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405412463857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063882581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22203/ecm.v005a03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069338721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2351/1.4885235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070755777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/rpj-11-2015-0178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084202017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcim.2017.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090357219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17452759.2018.1426368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100482957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/rpj-12-2016-0201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101062531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17452759.2018.1442229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101325175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1631/jzus.a18nw001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103401428", 
          "https://doi.org/10.1631/jzus.a18nw001"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Interest in lightweight geometries and cellular structures has increased due to the freeform capabilities of additive manufacturing technologies. In this paper, six different cellular structures were designed and parameterised with three design variables to carry out the lightweight optimisation of an initial solid sample. According to the limitations of conventional computer-aided design (CAD) software, a new parametric optimisation method was implemented and used to optimise these six types of structures. The best one in terms of optimisation time and stiffness was parameterised with nine design variables, changing the dimensions of the internal cellular structure and the reinforcement zones. These seven optimised geometries were manufactured in a Phenix ProX200 selective laser melting machine without using support. The samples obtained were tested under flexural load. The results show that the cubic cell structures have some advantages in terms of CAD definition, parameterisation and optimisation time because of their simpler geometry. However, from the flexural test results it can be concluded that this type of cell structure and those with horizontal bars experience a loss of stiffness compared to the estimates of the finite element analysis because of imperfections in the manufacturing process of hanging structures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1631/jzus.a1800422", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327389", 
        "issn": [
          "1009-3095", 
          "1862-1775"
        ], 
        "name": "Journal of Zhejiang University-SCIENCE A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Comparison of different cellular structures for the design of selective laser melting parts through the application of a new lightweight parametric optimisation method", 
    "pagination": "117-132", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d0d2e9b7e726615fb41e221b67b82358848dce2cee54b0f5936aa0e13f64dda"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1631/jzus.a1800422"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111493459"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1631/jzus.a1800422", 
      "https://app.dimensions.ai/details/publication/pub.1111493459"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43232_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1631%2Fjzus.A1800422"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1631/jzus.a1800422'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1631/jzus.a1800422'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1631/jzus.a1800422'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1631/jzus.a1800422'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1631/jzus.a1800422 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 schema:author N74d07b6a7bba49d28c5ab6615d1d7ba2
4 schema:citation sg:pub.10.1007/s12541-011-0008-9
5 sg:pub.10.1631/jzus.a18nw001
6 https://doi.org/10.1002/jbm.b.31219
7 https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.107
8 https://doi.org/10.1016/j.jmbbm.2016.04.041
9 https://doi.org/10.1016/j.rcim.2017.06.006
10 https://doi.org/10.1016/j.tibtech.2004.05.005
11 https://doi.org/10.1016/j.tibtech.2004.10.004
12 https://doi.org/10.1016/s0924-0136(01)00744-0
13 https://doi.org/10.1063/1.4935926
14 https://doi.org/10.1080/07853890701881788
15 https://doi.org/10.1080/17452759.2013.837629
16 https://doi.org/10.1080/17452759.2018.1426368
17 https://doi.org/10.1080/17452759.2018.1442229
18 https://doi.org/10.1089/107632701753337645
19 https://doi.org/10.1098/rsta.2010.0010
20 https://doi.org/10.1108/02644400110387640
21 https://doi.org/10.1108/rpj-11-2015-0178
22 https://doi.org/10.1108/rpj-12-2016-0201
23 https://doi.org/10.1111/j.1475-1305.2008.00498.x
24 https://doi.org/10.1177/0954405412463857
25 https://doi.org/10.22203/ecm.v005a03
26 https://doi.org/10.2351/1.4885235
27 https://doi.org/10.5772/10432
28 schema:datePublished 2019-02
29 schema:datePublishedReg 2019-02-01
30 schema:description Interest in lightweight geometries and cellular structures has increased due to the freeform capabilities of additive manufacturing technologies. In this paper, six different cellular structures were designed and parameterised with three design variables to carry out the lightweight optimisation of an initial solid sample. According to the limitations of conventional computer-aided design (CAD) software, a new parametric optimisation method was implemented and used to optimise these six types of structures. The best one in terms of optimisation time and stiffness was parameterised with nine design variables, changing the dimensions of the internal cellular structure and the reinforcement zones. These seven optimised geometries were manufactured in a Phenix ProX200 selective laser melting machine without using support. The samples obtained were tested under flexural load. The results show that the cubic cell structures have some advantages in terms of CAD definition, parameterisation and optimisation time because of their simpler geometry. However, from the flexural test results it can be concluded that this type of cell structure and those with horizontal bars experience a loss of stiffness compared to the estimates of the finite element analysis because of imperfections in the manufacturing process of hanging structures.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N3afb8dcbdd954048afad0aa8733bc427
35 N803535969b904693b434c730123e20e0
36 sg:journal.1327389
37 schema:name Comparison of different cellular structures for the design of selective laser melting parts through the application of a new lightweight parametric optimisation method
38 schema:pagination 117-132
39 schema:productId N08a36cab9f4c4dc782318c4a9a9ae62d
40 N65426078ffd949c7ba2760970610b150
41 Nedc3072804934fe68f2168faea2aee04
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111493459
43 https://doi.org/10.1631/jzus.a1800422
44 schema:sdDatePublished 2019-04-11T10:53
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N240f555c300241a09e8f346816c43ef1
47 schema:url https://link.springer.com/10.1631%2Fjzus.A1800422
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N08a36cab9f4c4dc782318c4a9a9ae62d schema:name dimensions_id
52 schema:value pub.1111493459
53 rdf:type schema:PropertyValue
54 N240f555c300241a09e8f346816c43ef1 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N3afb8dcbdd954048afad0aa8733bc427 schema:issueNumber 2
57 rdf:type schema:PublicationIssue
58 N513b845570d54c9e9e56320f4fc02850 rdf:first sg:person.012426424476.78
59 rdf:rest N758e225f74ee4b5c984df249dbbf0613
60 N65426078ffd949c7ba2760970610b150 schema:name doi
61 schema:value 10.1631/jzus.a1800422
62 rdf:type schema:PropertyValue
63 N74d07b6a7bba49d28c5ab6615d1d7ba2 rdf:first sg:person.015310413577.57
64 rdf:rest N513b845570d54c9e9e56320f4fc02850
65 N758e225f74ee4b5c984df249dbbf0613 rdf:first sg:person.07377270007.37
66 rdf:rest N90a08ca58d914ac2aed3e6fb253861cf
67 N803535969b904693b434c730123e20e0 schema:volumeNumber 20
68 rdf:type schema:PublicationVolume
69 N90a08ca58d914ac2aed3e6fb253861cf rdf:first sg:person.012614161133.25
70 rdf:rest rdf:nil
71 Nedc3072804934fe68f2168faea2aee04 schema:name readcube_id
72 schema:value 2d0d2e9b7e726615fb41e221b67b82358848dce2cee54b0f5936aa0e13f64dda
73 rdf:type schema:PropertyValue
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
78 schema:name Manufacturing Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1327389 schema:issn 1009-3095
81 1862-1775
82 schema:name Journal of Zhejiang University-SCIENCE A
83 rdf:type schema:Periodical
84 sg:person.012426424476.78 schema:affiliation https://www.grid.ac/institutes/grid.4521.2
85 schema:familyName Monzón
86 schema:givenName Mario D.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012426424476.78
88 rdf:type schema:Person
89 sg:person.012614161133.25 schema:affiliation https://www.grid.ac/institutes/grid.434191.a
90 schema:familyName Sova
91 schema:givenName Alexey
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012614161133.25
93 rdf:type schema:Person
94 sg:person.015310413577.57 schema:affiliation https://www.grid.ac/institutes/grid.4521.2
95 schema:familyName Paz
96 schema:givenName Rubén
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310413577.57
98 rdf:type schema:Person
99 sg:person.07377270007.37 schema:affiliation https://www.grid.ac/institutes/grid.434191.a
100 schema:familyName Bertrand
101 schema:givenName Philippe
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377270007.37
103 rdf:type schema:Person
104 sg:pub.10.1007/s12541-011-0008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014979043
105 https://doi.org/10.1007/s12541-011-0008-9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1631/jzus.a18nw001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103401428
108 https://doi.org/10.1631/jzus.a18nw001
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/jbm.b.31219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000411571
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030861744
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jmbbm.2016.04.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034026048
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.rcim.2017.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090357219
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.tibtech.2004.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010399606
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.tibtech.2004.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036482994
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0924-0136(01)00744-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011737500
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.4935926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047713737
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/07853890701881788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000650422
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/17452759.2013.837629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044741923
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/17452759.2018.1426368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100482957
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/17452759.2018.1442229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101325175
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1089/107632701753337645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059205999
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1098/rsta.2010.0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002559711
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1108/02644400110387640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019151083
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1108/rpj-11-2015-0178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084202017
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1108/rpj-12-2016-0201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101062531
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/j.1475-1305.2008.00498.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007286230
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1177/0954405412463857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063882581
147 rdf:type schema:CreativeWork
148 https://doi.org/10.22203/ecm.v005a03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069338721
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2351/1.4885235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070755777
151 rdf:type schema:CreativeWork
152 https://doi.org/10.5772/10432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019580865
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.434191.a schema:alternateName École Nationale d'Ingénieurs de Saint-Etienne
155 schema:name University of Lyon, ENISE, LTDS CNRS UMR 5513, 42023, Saint-Etienne, France
156 rdf:type schema:Organization
157 https://www.grid.ac/institutes/grid.4521.2 schema:alternateName University of Las Palmas de Gran Canaria
158 schema:name Universidad de Las Palmas de Gran Canaria, Departamento de Ingeniería Mecánica, 35017, Las Palmas de Gran Canaria, Spain
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...