Interactive image segmentation with a regression based ensemble learning paradigm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Jin Zhang, Zhao-hui Tang, Wei-hua Gui, Qing Chen, Jin-ping Liu

ABSTRACT

To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. However, when the foreground and background share some similar areas in color, the fine segmentation result of conventional interactive methods usually relies on the increase of manual labels. This paper presents a novel interactive image segmentation method via a regression-based ensemble model with semi-supervised learning. The task is formulated as a non-linear problem integrating two complementary spline regressors and strengthening the robustness of each regressor via semi-supervised learning. First, two spline regressors with a complementary nature are constructed based on multivariate adaptive regression splines (MARS) and smooth thin plate spline regression (TPSR). Then, a regressor boosting method based on a clustering hypothesis and semi-supervised learning is proposed to assist the training of MARS and TPSR by using the region segmentation information contained in unlabeled pixels. Next, a support vector regression (SVR) based decision fusion model is adopted to integrate the results of MARS and TPSR. Finally, the GraphCut is introduced and combined with the SVR ensemble results to achieve image segmentation. Extensive experimental results on benchmark datasets of BSDS500 and Pascal VOC have demonstrated the effectiveness of our method, and the comparison with experiment results has validated that the proposed method is comparable with the state-of-the-art methods for interactive natural image segmentation. More... »

PAGES

1002-1020

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1631/fitee.1601401

DOI

http://dx.doi.org/10.1631/fitee.1601401

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091078661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Information Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jin", 
        "id": "sg:person.01035677157.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035677157.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Information Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Zhao-hui", 
        "id": "sg:person.014347346361.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014347346361.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Information Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gui", 
        "givenName": "Wei-hua", 
        "id": "sg:person.014564074022.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564074022.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411431.2", 
          "name": [
            "College of Computer and Communication, Hunan University of Technology, 412007, Zhuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Qing", 
        "id": "sg:person.01104012357.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104012357.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411427.5", 
          "name": [
            "College of Mathematics and Computer Science, Hunan Normal University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jin-ping", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-24075-6_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003670985", 
          "https://doi.org/10.1007/978-3-319-24075-6_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2013.05.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005080072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11460-011-0126-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005278558", 
          "https://doi.org/10.1007/s11460-011-0126-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2015.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011168150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-009-0275-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014796149", 
          "https://doi.org/10.1007/s11263-009-0275-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-009-0275-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014796149", 
          "https://doi.org/10.1007/s11263-009-0275-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/aogs.12344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016164441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2009.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021085242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.4699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026023454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.09.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026317147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2014.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028669631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2014.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030169145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2012.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036193911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2013.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037243265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2010.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037297549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-45646-0_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039122485", 
          "https://doi.org/10.1007/978-3-662-45646-0_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044697038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176347963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045549108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11886-015-0687-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046004933", 
          "https://doi.org/10.1007/s11886-015-0687-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047744919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047744919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047744919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047744919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10255842.2016.1181173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052103565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.969114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.312897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2009.2018570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2048611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2012.2191566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2016.2518480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.190644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2004.1262177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2011.2161285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2011.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1015706.1015719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063148831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1015706.1015720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063148832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/gae.2016.10.3.269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064860833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/hydro.2011.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069134832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579486"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. However, when the foreground and background share some similar areas in color, the fine segmentation result of conventional interactive methods usually relies on the increase of manual labels. This paper presents a novel interactive image segmentation method via a regression-based ensemble model with semi-supervised learning. The task is formulated as a non-linear problem integrating two complementary spline regressors and strengthening the robustness of each regressor via semi-supervised learning. First, two spline regressors with a complementary nature are constructed based on multivariate adaptive regression splines (MARS) and smooth thin plate spline regression (TPSR). Then, a regressor boosting method based on a clustering hypothesis and semi-supervised learning is proposed to assist the training of MARS and TPSR by using the region segmentation information contained in unlabeled pixels. Next, a support vector regression (SVR) based decision fusion model is adopted to integrate the results of MARS and TPSR. Finally, the GraphCut is introduced and combined with the SVR ensemble results to achieve image segmentation. Extensive experimental results on benchmark datasets of BSDS500 and Pascal VOC have demonstrated the effectiveness of our method, and the comparison with experiment results has validated that the proposed method is comparable with the state-of-the-art methods for interactive natural image segmentation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1631/fitee.1601401", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052466", 
        "issn": [
          "2095-9184", 
          "2095-9230"
        ], 
        "name": "Frontiers of Information Technology & Electronic Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Interactive image segmentation with a regression based ensemble learning paradigm", 
    "pagination": "1002-1020", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0e9d45d801cdb2e0dbdfff86d4319ed1480d079be2ca0d36cb33a20abcef3944"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1631/fitee.1601401"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091078661"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1631/fitee.1601401", 
      "https://app.dimensions.ai/details/publication/pub.1091078661"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1631/FITEE.1601401"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1631/fitee.1601401'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1631/fitee.1601401'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1631/fitee.1601401'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1631/fitee.1601401'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1631/fitee.1601401 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N715de92621744989a5663428695b54db
4 schema:citation sg:pub.10.1007/978-3-319-24075-6_12
5 sg:pub.10.1007/978-3-662-45646-0_25
6 sg:pub.10.1007/s11263-009-0275-4
7 sg:pub.10.1007/s11460-011-0126-2
8 sg:pub.10.1007/s11886-015-0687-4
9 https://doi.org/10.1002/joc.4699
10 https://doi.org/10.1016/j.eswa.2013.09.035
11 https://doi.org/10.1016/j.jcmg.2014.09.002
12 https://doi.org/10.1016/j.mineng.2015.12.008
13 https://doi.org/10.1016/j.neucom.2011.08.004
14 https://doi.org/10.1016/j.neucom.2013.05.044
15 https://doi.org/10.1016/j.neucom.2013.09.021
16 https://doi.org/10.1016/j.patcog.2009.03.004
17 https://doi.org/10.1016/j.patcog.2010.08.008
18 https://doi.org/10.1016/j.patcog.2012.09.015
19 https://doi.org/10.1016/j.patcog.2014.02.010
20 https://doi.org/10.1016/j.patcog.2016.01.018
21 https://doi.org/10.1080/10255842.2016.1181173
22 https://doi.org/10.1109/34.969114
23 https://doi.org/10.1109/36.312897
24 https://doi.org/10.1109/tip.2009.2018570
25 https://doi.org/10.1109/tip.2010.2048611
26 https://doi.org/10.1109/tip.2012.2191566
27 https://doi.org/10.1109/tip.2016.2518480
28 https://doi.org/10.1109/tkde.2007.190644
29 https://doi.org/10.1109/tpami.2004.1262177
30 https://doi.org/10.1109/tpami.2010.35
31 https://doi.org/10.1109/tsmcc.2011.2161285
32 https://doi.org/10.1109/tvcg.2011.77
33 https://doi.org/10.1111/aogs.12344
34 https://doi.org/10.1145/1015706.1015719
35 https://doi.org/10.1145/1015706.1015720
36 https://doi.org/10.1214/aos/1176347963
37 https://doi.org/10.12989/gae.2016.10.3.269
38 https://doi.org/10.1613/jair.614
39 https://doi.org/10.2166/hydro.2011.044
40 schema:datePublished 2017-07
41 schema:datePublishedReg 2017-07-01
42 schema:description To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. However, when the foreground and background share some similar areas in color, the fine segmentation result of conventional interactive methods usually relies on the increase of manual labels. This paper presents a novel interactive image segmentation method via a regression-based ensemble model with semi-supervised learning. The task is formulated as a non-linear problem integrating two complementary spline regressors and strengthening the robustness of each regressor via semi-supervised learning. First, two spline regressors with a complementary nature are constructed based on multivariate adaptive regression splines (MARS) and smooth thin plate spline regression (TPSR). Then, a regressor boosting method based on a clustering hypothesis and semi-supervised learning is proposed to assist the training of MARS and TPSR by using the region segmentation information contained in unlabeled pixels. Next, a support vector regression (SVR) based decision fusion model is adopted to integrate the results of MARS and TPSR. Finally, the GraphCut is introduced and combined with the SVR ensemble results to achieve image segmentation. Extensive experimental results on benchmark datasets of BSDS500 and Pascal VOC have demonstrated the effectiveness of our method, and the comparison with experiment results has validated that the proposed method is comparable with the state-of-the-art methods for interactive natural image segmentation.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf Na5c3d17fa2a24433a058ed5d9f70abb5
47 Ne1afb8965d244ecd94fdb162e8ab820c
48 sg:journal.1052466
49 schema:name Interactive image segmentation with a regression based ensemble learning paradigm
50 schema:pagination 1002-1020
51 schema:productId N896d6b4858af47139cdf8bdedf6379ac
52 N8d9f73bf52da4ed99430ae82ed53b66b
53 Nacec59b71612434f91c89a68c75894a0
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091078661
55 https://doi.org/10.1631/fitee.1601401
56 schema:sdDatePublished 2019-04-10T16:04
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N304b8302edc14ab680eb02c785719422
59 schema:url http://link.springer.com/10.1631/FITEE.1601401
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N19a59dceed974d5cbb3d34ea08e9aeb6 rdf:first sg:person.014347346361.48
64 rdf:rest N40d926d37aaa4c45b4ae045e3ade8880
65 N2aee7b644a5d4affae8d975be8aa3543 rdf:first sg:person.01104012357.07
66 rdf:rest N2b548322a728488a863e5d95b95514cc
67 N2b548322a728488a863e5d95b95514cc rdf:first N97e49921831c46069eb5d9f9ae5bedc6
68 rdf:rest rdf:nil
69 N304b8302edc14ab680eb02c785719422 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N40d926d37aaa4c45b4ae045e3ade8880 rdf:first sg:person.014564074022.19
72 rdf:rest N2aee7b644a5d4affae8d975be8aa3543
73 N715de92621744989a5663428695b54db rdf:first sg:person.01035677157.42
74 rdf:rest N19a59dceed974d5cbb3d34ea08e9aeb6
75 N896d6b4858af47139cdf8bdedf6379ac schema:name readcube_id
76 schema:value 0e9d45d801cdb2e0dbdfff86d4319ed1480d079be2ca0d36cb33a20abcef3944
77 rdf:type schema:PropertyValue
78 N8d9f73bf52da4ed99430ae82ed53b66b schema:name doi
79 schema:value 10.1631/fitee.1601401
80 rdf:type schema:PropertyValue
81 N97e49921831c46069eb5d9f9ae5bedc6 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
82 schema:familyName Liu
83 schema:givenName Jin-ping
84 rdf:type schema:Person
85 Na5c3d17fa2a24433a058ed5d9f70abb5 schema:volumeNumber 18
86 rdf:type schema:PublicationVolume
87 Nacec59b71612434f91c89a68c75894a0 schema:name dimensions_id
88 schema:value pub.1091078661
89 rdf:type schema:PropertyValue
90 Ne1afb8965d244ecd94fdb162e8ab820c schema:issueNumber 7
91 rdf:type schema:PublicationIssue
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:journal.1052466 schema:issn 2095-9184
99 2095-9230
100 schema:name Frontiers of Information Technology & Electronic Engineering
101 rdf:type schema:Periodical
102 sg:person.01035677157.42 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
103 schema:familyName Zhang
104 schema:givenName Jin
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035677157.42
106 rdf:type schema:Person
107 sg:person.01104012357.07 schema:affiliation https://www.grid.ac/institutes/grid.411431.2
108 schema:familyName Chen
109 schema:givenName Qing
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104012357.07
111 rdf:type schema:Person
112 sg:person.014347346361.48 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
113 schema:familyName Tang
114 schema:givenName Zhao-hui
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014347346361.48
116 rdf:type schema:Person
117 sg:person.014564074022.19 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
118 schema:familyName Gui
119 schema:givenName Wei-hua
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564074022.19
121 rdf:type schema:Person
122 sg:pub.10.1007/978-3-319-24075-6_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003670985
123 https://doi.org/10.1007/978-3-319-24075-6_12
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-662-45646-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039122485
126 https://doi.org/10.1007/978-3-662-45646-0_25
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11263-009-0275-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014796149
129 https://doi.org/10.1007/s11263-009-0275-4
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11460-011-0126-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005278558
132 https://doi.org/10.1007/s11460-011-0126-2
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11886-015-0687-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046004933
135 https://doi.org/10.1007/s11886-015-0687-4
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/joc.4699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026023454
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.eswa.2013.09.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026317147
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jcmg.2014.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028669631
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.mineng.2015.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011168150
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.neucom.2011.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044697038
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.neucom.2013.05.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005080072
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.neucom.2013.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037243265
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.patcog.2009.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021085242
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.patcog.2010.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037297549
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.patcog.2012.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036193911
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.patcog.2014.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030169145
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.patcog.2016.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047744919
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/10255842.2016.1181173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052103565
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/34.969114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157335
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/36.312897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161150
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tip.2009.2018570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642210
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tip.2010.2048611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642510
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tip.2012.2191566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643179
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tip.2016.2518480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644819
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tkde.2007.190644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661707
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tpami.2004.1262177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742646
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tpami.2010.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743957
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tsmcc.2011.2161285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798360
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tvcg.2011.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813710
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/aogs.12344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016164441
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/1015706.1015719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063148831
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/1015706.1015720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063148832
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1214/aos/1176347963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045549108
192 rdf:type schema:CreativeWork
193 https://doi.org/10.12989/gae.2016.10.3.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064860833
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1613/jair.614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579486
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2166/hydro.2011.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069134832
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
200 schema:name School of Information Science and Engineering, Central South University, 410083, Changsha, China
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
203 schema:name College of Mathematics and Computer Science, Hunan Normal University, 410083, Changsha, China
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.411431.2 schema:alternateName Hunan University of Technology
206 schema:name College of Computer and Communication, Hunan University of Technology, 412007, Zhuzhou, China
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...