Fracture failure in crack interaction of asphalt binder by using a phase field approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09

AUTHORS

Yue Hou, Linbing Wang, Pengtao Yue, Wenjuan Sun

ABSTRACT

Fracture failure in crack interaction of asphalt binder has always been one serious problem in the pavement industry. In the state of the art research of asphalt cracking, single mode cracking has been studied by many researchers but there lacks theoretical and experimental research on the crack interaction of asphalt binder, which is more reasonable and realistic. The traditional way is to use the Griffith’s theory which is complex and complicated. In this paper, the phase field method (PFM) is presented for modeling, which describes the whole cracking system using a phase-field variable that assumes negative one in the void region (crack) and positive one in the solid region (intact). The fracture toughness is then considered as a material property and modeled as the surface energy stored in the diffuse interface between the intact solid and crack void. The non-conserved Allen–Cahn equation is adopted as the system governing equation to evolve the phase field variable to account for the growth of cracks. The energy based formulation of the phase-field method handles the competition between the growth of surface energy and release of elastic energy of crack interaction in a natural way: the crack propagation is a result of the energy minimization in the direction of the steepest descent. Both the linear elasticity and phase-field equation are solved in a unified finite element frame work, which is implemented in the commercial software COMSOL. Two cracking experiments, namely, direct tension test and double edge notch tension test are then performed for validation. It is discovered that the critical load of crack interaction by PFM agrees very well with both experiment results. More... »

PAGES

2997-3008

Journal

TITLE

Materials and Structures

ISSUE

9

VOLUME

48

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1617/s11527-014-0372-x

DOI

http://dx.doi.org/10.1617/s11527-014-0372-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020149219


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "Yue", 
        "id": "sg:person.016202034623.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016202034623.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "The Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Linbing", 
        "id": "sg:person.01346007164.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346007164.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Mathematics, Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yue", 
        "givenName": "Pengtao", 
        "id": "sg:person.01031266044.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031266044.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Wenjuan", 
        "id": "sg:person.011700270360.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011700270360.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0022-3727/40/4/040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004065079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00012673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005729806", 
          "https://doi.org/10.1007/bf00012673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00012673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005729806", 
          "https://doi.org/10.1007/bf00012673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1617/s11527-012-9827-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006877953", 
          "https://doi.org/10.1617/s11527-012-9827-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203092989.ch75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007018767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2010.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014003700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1999.6332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016725882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02486415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020879042", 
          "https://doi.org/10.1007/bf02486415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.045501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021036418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.045501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021036418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02480586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021233463", 
          "https://doi.org/10.1007/bf02480586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spmi.2004.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026466885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012046302395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029401069", 
          "https://doi.org/10.1023/a:1012046302395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1921.0006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033816692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pamm.201110206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037079270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(91)90152-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040840186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(91)90152-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040840186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.036117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045227378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.036117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045227378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051037812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051037812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1617/s11527-008-9412-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052687780", 
          "https://doi.org/10.1617/s11527-008-9412-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02480583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053387265", 
          "https://doi.org/10.1007/bf02480583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112009992679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053899879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112009992679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053899879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112004000370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053987690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0899-1561(2005)17:1(99)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057612309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)mt.1943-5533.0000874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057639889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1744102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057806543"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "Fracture failure in crack interaction of asphalt binder has always been one serious problem in the pavement industry. In the state of the art research of asphalt cracking, single mode cracking has been studied by many researchers but there lacks theoretical and experimental research on the crack interaction of asphalt binder, which is more reasonable and realistic. The traditional way is to use the Griffith\u2019s theory which is complex and complicated. In this paper, the phase field method (PFM) is presented for modeling, which describes the whole cracking system using a phase-field variable that assumes negative one in the void region (crack) and positive one in the solid region (intact). The fracture toughness is then considered as a material property and modeled as the surface energy stored in the diffuse interface between the intact solid and crack void. The non-conserved Allen\u2013Cahn equation is adopted as the system governing equation to evolve the phase field variable to account for the growth of cracks. The energy based formulation of the phase-field method handles the competition between the growth of surface energy and release of elastic energy of crack interaction in a natural way: the crack propagation is a result of the energy minimization in the direction of the steepest descent. Both the linear elasticity and phase-field equation are solved in a unified finite element frame work, which is implemented in the commercial software COMSOL. Two cracking experiments, namely, direct tension test and double edge notch tension test are then performed for validation. It is discovered that the critical load of crack interaction by PFM agrees very well with both experiment results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1617/s11527-014-0372-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1271261", 
        "issn": [
          "1359-5997", 
          "1871-6873"
        ], 
        "name": "Materials and Structures", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Fracture failure in crack interaction of asphalt binder by using a phase field approach", 
    "pagination": "2997-3008", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6000fdbf11f139a10c6b1c58071d84ec9dbb89fee66466a4f518d790c8803087"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1617/s11527-014-0372-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020149219"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1617/s11527-014-0372-x", 
      "https://app.dimensions.ai/details/publication/pub.1020149219"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1617/s11527-014-0372-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1617/s11527-014-0372-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1617/s11527-014-0372-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1617/s11527-014-0372-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1617/s11527-014-0372-x'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1617/s11527-014-0372-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7c1fd6823eed4441a7c4d91fe8902ee8
4 schema:citation sg:pub.10.1007/bf00012673
5 sg:pub.10.1007/bf02480583
6 sg:pub.10.1007/bf02480586
7 sg:pub.10.1007/bf02486415
8 sg:pub.10.1023/a:1012046302395
9 sg:pub.10.1617/s11527-008-9412-8
10 sg:pub.10.1617/s11527-012-9827-0
11 https://doi.org/10.1002/pamm.201110206
12 https://doi.org/10.1006/jcph.1999.6332
13 https://doi.org/10.1016/0013-7944(91)90152-q
14 https://doi.org/10.1016/j.engfracmech.2010.08.009
15 https://doi.org/10.1016/j.spmi.2004.08.029
16 https://doi.org/10.1017/s0022112004000370
17 https://doi.org/10.1017/s0022112009992679
18 https://doi.org/10.1061/(asce)0899-1561(2005)17:1(99)
19 https://doi.org/10.1061/(asce)mt.1943-5533.0000874
20 https://doi.org/10.1063/1.1744102
21 https://doi.org/10.1088/0022-3727/40/4/040
22 https://doi.org/10.1098/rsta.1921.0006
23 https://doi.org/10.1103/physreve.65.036117
24 https://doi.org/10.1103/physreve.75.066111
25 https://doi.org/10.1103/physrevlett.87.045501
26 https://doi.org/10.1201/9780203092989.ch75
27 schema:datePublished 2015-09
28 schema:datePublishedReg 2015-09-01
29 schema:description Fracture failure in crack interaction of asphalt binder has always been one serious problem in the pavement industry. In the state of the art research of asphalt cracking, single mode cracking has been studied by many researchers but there lacks theoretical and experimental research on the crack interaction of asphalt binder, which is more reasonable and realistic. The traditional way is to use the Griffith’s theory which is complex and complicated. In this paper, the phase field method (PFM) is presented for modeling, which describes the whole cracking system using a phase-field variable that assumes negative one in the void region (crack) and positive one in the solid region (intact). The fracture toughness is then considered as a material property and modeled as the surface energy stored in the diffuse interface between the intact solid and crack void. The non-conserved Allen–Cahn equation is adopted as the system governing equation to evolve the phase field variable to account for the growth of cracks. The energy based formulation of the phase-field method handles the competition between the growth of surface energy and release of elastic energy of crack interaction in a natural way: the crack propagation is a result of the energy minimization in the direction of the steepest descent. Both the linear elasticity and phase-field equation are solved in a unified finite element frame work, which is implemented in the commercial software COMSOL. Two cracking experiments, namely, direct tension test and double edge notch tension test are then performed for validation. It is discovered that the critical load of crack interaction by PFM agrees very well with both experiment results.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N11db897c9cc24e07b67ee5199e51f193
34 N7ce82c854960462993bebeaa28250b46
35 sg:journal.1271261
36 schema:name Fracture failure in crack interaction of asphalt binder by using a phase field approach
37 schema:pagination 2997-3008
38 schema:productId N0ecf65b1ff46418581f24a20344e4a5c
39 N7f66560c8d8d41e781f35b1d2ac18885
40 Nf9beefae74b74d6db875b48e4d86e9d7
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020149219
42 https://doi.org/10.1617/s11527-014-0372-x
43 schema:sdDatePublished 2019-04-10T19:06
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nd0f5bd0ef4e94182b3efd3a79b11f539
46 schema:url http://link.springer.com/10.1617/s11527-014-0372-x
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0ecf65b1ff46418581f24a20344e4a5c schema:name dimensions_id
51 schema:value pub.1020149219
52 rdf:type schema:PropertyValue
53 N11db897c9cc24e07b67ee5199e51f193 schema:issueNumber 9
54 rdf:type schema:PublicationIssue
55 N3a0280aff7c44e03b72e31339eda1138 rdf:first sg:person.011700270360.07
56 rdf:rest rdf:nil
57 N7c1fd6823eed4441a7c4d91fe8902ee8 rdf:first sg:person.016202034623.16
58 rdf:rest Nec8aa2db8da24886a384cfab53388f9c
59 N7ce82c854960462993bebeaa28250b46 schema:volumeNumber 48
60 rdf:type schema:PublicationVolume
61 N7f66560c8d8d41e781f35b1d2ac18885 schema:name readcube_id
62 schema:value 6000fdbf11f139a10c6b1c58071d84ec9dbb89fee66466a4f518d790c8803087
63 rdf:type schema:PropertyValue
64 N8b2e8a02e40948389a3c891d513c2260 rdf:first sg:person.01031266044.25
65 rdf:rest N3a0280aff7c44e03b72e31339eda1138
66 Nd0f5bd0ef4e94182b3efd3a79b11f539 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nec8aa2db8da24886a384cfab53388f9c rdf:first sg:person.01346007164.29
69 rdf:rest N8b2e8a02e40948389a3c891d513c2260
70 Nf9beefae74b74d6db875b48e4d86e9d7 schema:name doi
71 schema:value 10.1617/s11527-014-0372-x
72 rdf:type schema:PropertyValue
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
77 schema:name Materials Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1271261 schema:issn 1359-5997
80 1871-6873
81 schema:name Materials and Structures
82 rdf:type schema:Periodical
83 sg:person.01031266044.25 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
84 schema:familyName Yue
85 schema:givenName Pengtao
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031266044.25
87 rdf:type schema:Person
88 sg:person.011700270360.07 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
89 schema:familyName Sun
90 schema:givenName Wenjuan
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011700270360.07
92 rdf:type schema:Person
93 sg:person.01346007164.29 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
94 schema:familyName Wang
95 schema:givenName Linbing
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346007164.29
97 rdf:type schema:Person
98 sg:person.016202034623.16 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
99 schema:familyName Hou
100 schema:givenName Yue
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016202034623.16
102 rdf:type schema:Person
103 sg:pub.10.1007/bf00012673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005729806
104 https://doi.org/10.1007/bf00012673
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02480583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053387265
107 https://doi.org/10.1007/bf02480583
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02480586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021233463
110 https://doi.org/10.1007/bf02480586
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02486415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020879042
113 https://doi.org/10.1007/bf02486415
114 rdf:type schema:CreativeWork
115 sg:pub.10.1023/a:1012046302395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029401069
116 https://doi.org/10.1023/a:1012046302395
117 rdf:type schema:CreativeWork
118 sg:pub.10.1617/s11527-008-9412-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687780
119 https://doi.org/10.1617/s11527-008-9412-8
120 rdf:type schema:CreativeWork
121 sg:pub.10.1617/s11527-012-9827-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006877953
122 https://doi.org/10.1617/s11527-012-9827-0
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/pamm.201110206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037079270
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1006/jcph.1999.6332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016725882
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0013-7944(91)90152-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1040840186
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.engfracmech.2010.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014003700
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.spmi.2004.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026466885
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1017/s0022112004000370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053987690
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s0022112009992679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053899879
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1061/(asce)0899-1561(2005)17:1(99) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057612309
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1061/(asce)mt.1943-5533.0000874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057639889
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.1744102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057806543
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/0022-3727/40/4/040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004065079
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1098/rsta.1921.0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033816692
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreve.65.036117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045227378
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.75.066111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051037812
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.87.045501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021036418
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1201/9780203092989.ch75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007018767
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
157 schema:name Department of Mathematics, Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA
158 The Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA
159 Virginia Polytechnic Institute and State University, 24061, Blacksburg, VA, USA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...