Ontology type: schema:ScholarlyArticle
2022-04-06
AUTHORSYashika Gupta, Anuj K. Singh, Abhay Anand V. S., Anshuman Kumar
ABSTRACTIn this work, we propose an easy-to-fabricate plasmonic cavity design to enhance luminescence from BA2PbI4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{BA}}_{2} {\text{PbI}}_{4}$$\end{document} Ruddlesden Popper thin films, which otherwise suffer from a very low quantum yield due to strong exciton-phonon interactions in the lattice. We designed a nanoparticle on mirror plasmonic cavity using 3D-finite-difference time-domain simulations, with perovskite film sandwiched between the two metallic structures yielding a 7-fold local enhancement in photoluminescence for intralayer excitons emitting at 520 nm. The designed cavity also aids the detection of interlayer excitons at 540 nm, for which a huge PL enhancement of more than 1500 times is easily obtained.Graphical abstract More... »
PAGES1-7
http://scigraph.springernature.com/pub.10.1557/s43580-022-00272-9
DOIhttp://dx.doi.org/10.1557/s43580-022-00272-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1146923437
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India",
"id": "http://www.grid.ac/institutes/grid.417971.d",
"name": [
"Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India"
],
"type": "Organization"
},
"familyName": "Gupta",
"givenName": "Yashika",
"id": "sg:person.013635175161.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013635175161.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India",
"id": "http://www.grid.ac/institutes/grid.417971.d",
"name": [
"Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India"
],
"type": "Organization"
},
"familyName": "Singh",
"givenName": "Anuj K.",
"id": "sg:person.013164612217.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013164612217.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India",
"id": "http://www.grid.ac/institutes/grid.417971.d",
"name": [
"Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India"
],
"type": "Organization"
},
"familyName": "Anand V. S.",
"givenName": "Abhay",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India",
"id": "http://www.grid.ac/institutes/grid.417971.d",
"name": [
"Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India"
],
"type": "Organization"
},
"familyName": "Kumar",
"givenName": "Anshuman",
"id": "sg:person.0672042110.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672042110.15"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nature17974",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011315958",
"https://doi.org/10.1038/nature17974"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41563-019-0290-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113158076",
"https://doi.org/10.1038/s41563-019-0290-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-04-06",
"datePublishedReg": "2022-04-06",
"description": "In this work, we propose an easy-to-fabricate plasmonic cavity design to enhance luminescence from BA2PbI4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text{BA}}_{2} {\\text{PbI}}_{4}$$\\end{document} Ruddlesden Popper thin films, which otherwise suffer from a very low quantum yield due to strong exciton-phonon interactions in the lattice. We designed a nanoparticle on mirror plasmonic cavity using 3D-finite-difference time-domain simulations, with perovskite film sandwiched between the two metallic structures yielding a 7-fold local enhancement in photoluminescence for intralayer excitons emitting at 520\u00a0nm. The designed cavity also aids the detection of interlayer excitons at 540\u00a0nm, for which a huge PL enhancement of more than 1500 times is easily obtained.Graphical abstract",
"genre": "article",
"id": "sg:pub.10.1557/s43580-022-00272-9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297379",
"issn": [
"0272-9172",
"2059-8521"
],
"name": "MRS Advances",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"difference time domain simulations",
"thin films",
"plasmonic cavity",
"plasmonic nanocavity",
"perovskite films",
"time-domain simulations",
"plane excitons",
"interlayer excitons",
"intralayer excitons",
"PL enhancement",
"metallic structures",
"low quantum yield",
"cavity design",
"Ruddlesden-Popper",
"films",
"quantum yield",
"nanoparticles",
"luminescence",
"nanocavities",
"local enhancement",
"photoluminescence",
"excitons",
"enhancement",
"simulations",
"exciton-phonon interaction",
"detection",
"design",
"cavity",
"plane",
"lattice",
"yield",
"structure",
"work",
"strong exciton-phonon interaction",
"time",
"interaction",
"Popper"
],
"name": "Plasmonic nanocavity enhanced luminescence for in-plane and out-of-plane excitons in BA2PbI4 Ruddlesden Popper perovskite thin film",
"pagination": "1-7",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1146923437"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1557/s43580-022-00272-9"
]
}
],
"sameAs": [
"https://doi.org/10.1557/s43580-022-00272-9",
"https://app.dimensions.ai/details/publication/pub.1146923437"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_935.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1557/s43580-022-00272-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/s43580-022-00272-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/s43580-022-00272-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/s43580-022-00272-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/s43580-022-00272-9'
This table displays all metadata directly associated to this object as RDF triples.
117 TRIPLES
22 PREDICATES
62 URIs
52 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1557/s43580-022-00272-9 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N534da614f02c40f7be52c9bbf3813bc9 |
4 | ″ | schema:citation | sg:pub.10.1038/nature17974 |
5 | ″ | ″ | sg:pub.10.1038/s41563-019-0290-y |
6 | ″ | schema:datePublished | 2022-04-06 |
7 | ″ | schema:datePublishedReg | 2022-04-06 |
8 | ″ | schema:description | In this work, we propose an easy-to-fabricate plasmonic cavity design to enhance luminescence from BA2PbI4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{BA}}_{2} {\text{PbI}}_{4}$$\end{document} Ruddlesden Popper thin films, which otherwise suffer from a very low quantum yield due to strong exciton-phonon interactions in the lattice. We designed a nanoparticle on mirror plasmonic cavity using 3D-finite-difference time-domain simulations, with perovskite film sandwiched between the two metallic structures yielding a 7-fold local enhancement in photoluminescence for intralayer excitons emitting at 520 nm. The designed cavity also aids the detection of interlayer excitons at 540 nm, for which a huge PL enhancement of more than 1500 times is easily obtained.Graphical abstract |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | sg:journal.1297379 |
13 | ″ | schema:keywords | PL enhancement |
14 | ″ | ″ | Popper |
15 | ″ | ″ | Ruddlesden-Popper |
16 | ″ | ″ | cavity |
17 | ″ | ″ | cavity design |
18 | ″ | ″ | design |
19 | ″ | ″ | detection |
20 | ″ | ″ | difference time domain simulations |
21 | ″ | ″ | enhancement |
22 | ″ | ″ | exciton-phonon interaction |
23 | ″ | ″ | excitons |
24 | ″ | ″ | films |
25 | ″ | ″ | interaction |
26 | ″ | ″ | interlayer excitons |
27 | ″ | ″ | intralayer excitons |
28 | ″ | ″ | lattice |
29 | ″ | ″ | local enhancement |
30 | ″ | ″ | low quantum yield |
31 | ″ | ″ | luminescence |
32 | ″ | ″ | metallic structures |
33 | ″ | ″ | nanocavities |
34 | ″ | ″ | nanoparticles |
35 | ″ | ″ | perovskite films |
36 | ″ | ″ | photoluminescence |
37 | ″ | ″ | plane |
38 | ″ | ″ | plane excitons |
39 | ″ | ″ | plasmonic cavity |
40 | ″ | ″ | plasmonic nanocavity |
41 | ″ | ″ | quantum yield |
42 | ″ | ″ | simulations |
43 | ″ | ″ | strong exciton-phonon interaction |
44 | ″ | ″ | structure |
45 | ″ | ″ | thin films |
46 | ″ | ″ | time |
47 | ″ | ″ | time-domain simulations |
48 | ″ | ″ | work |
49 | ″ | ″ | yield |
50 | ″ | schema:name | Plasmonic nanocavity enhanced luminescence for in-plane and out-of-plane excitons in BA2PbI4 Ruddlesden Popper perovskite thin film |
51 | ″ | schema:pagination | 1-7 |
52 | ″ | schema:productId | Nba8a7bc617d54ff5b0c57847a27e733c |
53 | ″ | ″ | Nf95a2bce716f44a28e83203ff86415b6 |
54 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1146923437 |
55 | ″ | ″ | https://doi.org/10.1557/s43580-022-00272-9 |
56 | ″ | schema:sdDatePublished | 2022-06-01T22:25 |
57 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
58 | ″ | schema:sdPublisher | N4103f70f2900499aa5ed03d848d420d1 |
59 | ″ | schema:url | https://doi.org/10.1557/s43580-022-00272-9 |
60 | ″ | sgo:license | sg:explorer/license/ |
61 | ″ | sgo:sdDataset | articles |
62 | ″ | rdf:type | schema:ScholarlyArticle |
63 | N2a8cd104bc654315aff2f7c6ba9777d1 | rdf:first | sg:person.013164612217.54 |
64 | ″ | rdf:rest | N7180184511db49c9b5fbeb0da0615d88 |
65 | N4103f70f2900499aa5ed03d848d420d1 | schema:name | Springer Nature - SN SciGraph project |
66 | ″ | rdf:type | schema:Organization |
67 | N4407862aa52d49e08840c1cf73e34105 | schema:affiliation | grid-institutes:grid.417971.d |
68 | ″ | schema:familyName | Anand V. S. |
69 | ″ | schema:givenName | Abhay |
70 | ″ | rdf:type | schema:Person |
71 | N5164c42f7d64486f9c284ef8d32132ba | rdf:first | sg:person.0672042110.15 |
72 | ″ | rdf:rest | rdf:nil |
73 | N534da614f02c40f7be52c9bbf3813bc9 | rdf:first | sg:person.013635175161.40 |
74 | ″ | rdf:rest | N2a8cd104bc654315aff2f7c6ba9777d1 |
75 | N7180184511db49c9b5fbeb0da0615d88 | rdf:first | N4407862aa52d49e08840c1cf73e34105 |
76 | ″ | rdf:rest | N5164c42f7d64486f9c284ef8d32132ba |
77 | Nba8a7bc617d54ff5b0c57847a27e733c | schema:name | dimensions_id |
78 | ″ | schema:value | pub.1146923437 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | Nf95a2bce716f44a28e83203ff86415b6 | schema:name | doi |
81 | ″ | schema:value | 10.1557/s43580-022-00272-9 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
84 | ″ | schema:name | Information and Computing Sciences |
85 | ″ | rdf:type | schema:DefinedTerm |
86 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Artificial Intelligence and Image Processing |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | sg:journal.1297379 | schema:issn | 0272-9172 |
90 | ″ | ″ | 2059-8521 |
91 | ″ | schema:name | MRS Advances |
92 | ″ | schema:publisher | Springer Nature |
93 | ″ | rdf:type | schema:Periodical |
94 | sg:person.013164612217.54 | schema:affiliation | grid-institutes:grid.417971.d |
95 | ″ | schema:familyName | Singh |
96 | ″ | schema:givenName | Anuj K. |
97 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013164612217.54 |
98 | ″ | rdf:type | schema:Person |
99 | sg:person.013635175161.40 | schema:affiliation | grid-institutes:grid.417971.d |
100 | ″ | schema:familyName | Gupta |
101 | ″ | schema:givenName | Yashika |
102 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013635175161.40 |
103 | ″ | rdf:type | schema:Person |
104 | sg:person.0672042110.15 | schema:affiliation | grid-institutes:grid.417971.d |
105 | ″ | schema:familyName | Kumar |
106 | ″ | schema:givenName | Anshuman |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672042110.15 |
108 | ″ | rdf:type | schema:Person |
109 | sg:pub.10.1038/nature17974 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011315958 |
110 | ″ | ″ | https://doi.org/10.1038/nature17974 |
111 | ″ | rdf:type | schema:CreativeWork |
112 | sg:pub.10.1038/s41563-019-0290-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1113158076 |
113 | ″ | ″ | https://doi.org/10.1038/s41563-019-0290-y |
114 | ″ | rdf:type | schema:CreativeWork |
115 | grid-institutes:grid.417971.d | schema:alternateName | Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India |
116 | ″ | schema:name | Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, Indian Institute of Technology Bombay, 400076, Mumbai, Maharashtra, India |
117 | ″ | rdf:type | schema:Organization |