In Situ Magnetic-Circular-X-Ray-Dichroism Measurements: An Epitaxial Fe Wedge on Cu(100) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

M.E. Dávila, D. Arvanitis, J. Hunter Dunn, N. Mårtensson, P. Srivastava, F. Wilhelm, K. Baberschke

ABSTRACT

Circularly polarized x-ray radiation is attracting increasing interest as a tool for the characterization of the electronic, magnetic, and chiral properties of low-dimensional structures. Using circular light (with electric field vector parallel to the orbital plane), a dependence of the measured quantity by changing either the orientation of the light polarization or the magnetization is indicative of the existence of magnetic circular dichroism. It can be observed in x-ray absorption spectroscopy (XAS), in which the photon energy is scanned through an absorption threshold exciting a core electron into an unoccupied valence state using circularly polarized light. Synchrotron radiation sources have made this technique possible. It can also be observed in photo-emission spectroscopy from core and valence levels. Here we focus on magnetic circular x-ray dichroism (MCXD) in XAS as an element-specific tool to investigate magnetic properties of ultrathin films in situ . The application of magneto-optical sum rules enables the determination of the orbital and spin magnetic moments per atom from XAS spectra, as well as the easy magnetization direction. MCXD-based magnetometry in XAS is extensively used by measuring the L absorption edges of 3d-transition metals, where large intensity changes (up to 60%) of the L-edge white lines are observed upon reversal of either the sample magnetization or the light helicity. The high magnetic contrast obtained, combined with the elemental specificity of the technique, allows for the study of very dilute samples such as ultrathin films. We first concentrate on the selection rules governing MCXD in XAS. More... »

PAGES

41-45

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/s0883769400051721

DOI

http://dx.doi.org/10.1557/s0883769400051721

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067964041


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "D\u00e1vila", 
        "givenName": "M.E.", 
        "id": "sg:person.010602770222.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602770222.89"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Arvanitis", 
        "givenName": "D.", 
        "id": "sg:person.015161714675.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015161714675.98"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Dunn", 
        "givenName": "J. Hunter", 
        "id": "sg:person.0627112403.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627112403.11"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00e5rtensson", 
        "givenName": "N.", 
        "id": "sg:person.010042753105.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042753105.51"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Srivastava", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wilhelm", 
        "givenName": "F.", 
        "id": "sg:person.01327015542.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327015542.12"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Baberschke", 
        "givenName": "K.", 
        "id": "sg:person.01216700716.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216700716.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/s0883769400045346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067963503", 
          "https://doi.org/10.1557/s0883769400045346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0102346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011530937", 
          "https://doi.org/10.1007/bfb0102346"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-01", 
    "datePublishedReg": "1999-01-01", 
    "description": " Circularly polarized x-ray radiation is attracting increasing interest as a tool for the characterization of the electronic, magnetic, and chiral properties of low-dimensional structures. Using circular light (with electric field vector parallel to the orbital plane), a dependence of the measured quantity by changing either the orientation of the light polarization or the magnetization is indicative of the existence of magnetic circular dichroism. It can be observed in x-ray absorption spectroscopy (XAS), in which the photon energy is scanned through an absorption threshold exciting a core electron into an unoccupied valence state using circularly polarized light. Synchrotron radiation sources have made this technique possible. It can also be observed in photo-emission spectroscopy from core and valence levels. Here we focus on magnetic circular x-ray dichroism (MCXD) in XAS as an element-specific tool to investigate magnetic properties of ultrathin films in situ . The application of magneto-optical sum rules enables the determination of the orbital and spin magnetic moments per atom from XAS spectra, as well as the easy magnetization direction.  MCXD-based magnetometry in XAS is extensively used by measuring the L absorption edges of 3d-transition metals, where large intensity changes (up to 60%) of the L-edge white lines are observed upon reversal of either the sample magnetization or the light helicity. The high magnetic contrast obtained, combined with the elemental specificity of the technique, allows for the study of very dilute samples such as ultrathin films. We first concentrate on the selection rules governing MCXD in XAS.", 
    "genre": "article", 
    "id": "sg:pub.10.1557/s0883769400051721", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1381332", 
        "issn": [
          "0883-7694", 
          "1938-1425"
        ], 
        "name": "MRS Bulletin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "magneto-optical sum rules", 
      "ultrathin films", 
      "unoccupied valence states", 
      "ray dichroism (MCXD) measurements", 
      "magnetic circular dichroism", 
      "edge white line", 
      "synchrotron radiation source", 
      "photo-emission spectroscopy", 
      "high magnetic contrast", 
      "ray absorption spectroscopy", 
      "magnetic circular", 
      "light helicity", 
      "ray dichroism", 
      "low-dimensional structures", 
      "light polarization", 
      "elemental specificity", 
      "photon energy", 
      "core electrons", 
      "absorption threshold", 
      "absorption edge", 
      "magnetic contrast", 
      "ray radiation", 
      "easy magnetization direction", 
      "XAS spectra", 
      "radiation source", 
      "sample magnetization", 
      "magnetic moment", 
      "absorption spectroscopy", 
      "large intensity changes", 
      "selection rules", 
      "circular light", 
      "sum rules", 
      "valence levels", 
      "valence state", 
      "chiral properties", 
      "XAS", 
      "magnetization direction", 
      "MCXD", 
      "magnetic properties", 
      "circular dichroism", 
      "dilute samples", 
      "spectroscopy", 
      "dichroism", 
      "magnetization", 
      "films", 
      "white line", 
      "intensity changes", 
      "electrons", 
      "light", 
      "magnetometry", 
      "atoms", 
      "polarization", 
      "helicity", 
      "radiation", 
      "properties", 
      "spectra", 
      "energy", 
      "metals", 
      "dependence", 
      "measurements", 
      "characterization", 
      "moment", 
      "existence", 
      "situ", 
      "determination", 
      "edge", 
      "rules", 
      "state", 
      "technique", 
      "structure", 
      "threshold", 
      "source", 
      "core", 
      "tool", 
      "direction", 
      "orientation", 
      "quantity", 
      "applications", 
      "samples", 
      "lines", 
      "reversal", 
      "wedge", 
      "interest", 
      "contrast", 
      "specificity", 
      "study", 
      "changes", 
      "levels", 
      "element-specific tool", 
      "Situ Magnetic-Circular", 
      "Epitaxial Fe Wedge", 
      "Fe Wedge"
    ], 
    "name": "In Situ Magnetic-Circular-X-Ray-Dichroism Measurements: An Epitaxial Fe Wedge on Cu(100)", 
    "pagination": "41-45", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067964041"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/s0883769400051721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/s0883769400051721", 
      "https://app.dimensions.ai/details/publication/pub.1067964041"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_344.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/s0883769400051721"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/s0883769400051721'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/s0883769400051721'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/s0883769400051721'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/s0883769400051721'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      22 PREDICATES      123 URIs      110 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/s0883769400051721 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0306
4 anzsrc-for:09
5 anzsrc-for:0912
6 schema:author N2bdb3f55136d492c8ffe496056a45270
7 schema:citation sg:pub.10.1007/bfb0102346
8 sg:pub.10.1557/s0883769400045346
9 schema:datePublished 1999-01
10 schema:datePublishedReg 1999-01-01
11 schema:description Circularly polarized x-ray radiation is attracting increasing interest as a tool for the characterization of the electronic, magnetic, and chiral properties of low-dimensional structures. Using circular light (with electric field vector parallel to the orbital plane), a dependence of the measured quantity by changing either the orientation of the light polarization or the magnetization is indicative of the existence of magnetic circular dichroism. It can be observed in x-ray absorption spectroscopy (XAS), in which the photon energy is scanned through an absorption threshold exciting a core electron into an unoccupied valence state using circularly polarized light. Synchrotron radiation sources have made this technique possible. It can also be observed in photo-emission spectroscopy from core and valence levels. Here we focus on magnetic circular x-ray dichroism (MCXD) in XAS as an element-specific tool to investigate magnetic properties of ultrathin films in situ . The application of magneto-optical sum rules enables the determination of the orbital and spin magnetic moments per atom from XAS spectra, as well as the easy magnetization direction. MCXD-based magnetometry in XAS is extensively used by measuring the L absorption edges of 3d-transition metals, where large intensity changes (up to 60%) of the L-edge white lines are observed upon reversal of either the sample magnetization or the light helicity. The high magnetic contrast obtained, combined with the elemental specificity of the technique, allows for the study of very dilute samples such as ultrathin films. We first concentrate on the selection rules governing MCXD in XAS.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N0760133386e84aaa982deb9a8b79e62d
16 N2231003ed33c48f69264a57e99c0e83c
17 sg:journal.1381332
18 schema:keywords Epitaxial Fe Wedge
19 Fe Wedge
20 MCXD
21 Situ Magnetic-Circular
22 XAS
23 XAS spectra
24 absorption edge
25 absorption spectroscopy
26 absorption threshold
27 applications
28 atoms
29 changes
30 characterization
31 chiral properties
32 circular dichroism
33 circular light
34 contrast
35 core
36 core electrons
37 dependence
38 determination
39 dichroism
40 dilute samples
41 direction
42 easy magnetization direction
43 edge
44 edge white line
45 electrons
46 element-specific tool
47 elemental specificity
48 energy
49 existence
50 films
51 helicity
52 high magnetic contrast
53 intensity changes
54 interest
55 large intensity changes
56 levels
57 light
58 light helicity
59 light polarization
60 lines
61 low-dimensional structures
62 magnetic circular
63 magnetic circular dichroism
64 magnetic contrast
65 magnetic moment
66 magnetic properties
67 magnetization
68 magnetization direction
69 magneto-optical sum rules
70 magnetometry
71 measurements
72 metals
73 moment
74 orientation
75 photo-emission spectroscopy
76 photon energy
77 polarization
78 properties
79 quantity
80 radiation
81 radiation source
82 ray absorption spectroscopy
83 ray dichroism
84 ray dichroism (MCXD) measurements
85 ray radiation
86 reversal
87 rules
88 sample magnetization
89 samples
90 selection rules
91 situ
92 source
93 specificity
94 spectra
95 spectroscopy
96 state
97 structure
98 study
99 sum rules
100 synchrotron radiation source
101 technique
102 threshold
103 tool
104 ultrathin films
105 unoccupied valence states
106 valence levels
107 valence state
108 wedge
109 white line
110 schema:name In Situ Magnetic-Circular-X-Ray-Dichroism Measurements: An Epitaxial Fe Wedge on Cu(100)
111 schema:pagination 41-45
112 schema:productId N22a5e3ab323442afb5ed788077270ef3
113 N56f07f5f389b44b98330235c29ceacdf
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067964041
115 https://doi.org/10.1557/s0883769400051721
116 schema:sdDatePublished 2022-01-01T18:11
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher Nd88eb744c6dc4889ab15519dcf150196
119 schema:url https://doi.org/10.1557/s0883769400051721
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N0760133386e84aaa982deb9a8b79e62d schema:issueNumber 1
124 rdf:type schema:PublicationIssue
125 N2231003ed33c48f69264a57e99c0e83c schema:volumeNumber 24
126 rdf:type schema:PublicationVolume
127 N22a5e3ab323442afb5ed788077270ef3 schema:name doi
128 schema:value 10.1557/s0883769400051721
129 rdf:type schema:PropertyValue
130 N2bdb3f55136d492c8ffe496056a45270 rdf:first sg:person.010602770222.89
131 rdf:rest Nfb760b78c9394a42b476f27a37fa2588
132 N3ac9db0a431c47929104a81c51d89623 rdf:first sg:person.0627112403.11
133 rdf:rest N804830f557d440459cc4784145a7fc42
134 N3f8c0f9583d14a9b951443538d5974b6 rdf:first sg:person.01327015542.12
135 rdf:rest Nb0ba7b06e09148ba8870b412c259d8a3
136 N56f07f5f389b44b98330235c29ceacdf schema:name dimensions_id
137 schema:value pub.1067964041
138 rdf:type schema:PropertyValue
139 N804830f557d440459cc4784145a7fc42 rdf:first sg:person.010042753105.51
140 rdf:rest Nbec393d5b6b148de977092b0f9286275
141 Nb0ba7b06e09148ba8870b412c259d8a3 rdf:first sg:person.01216700716.06
142 rdf:rest rdf:nil
143 Nbec393d5b6b148de977092b0f9286275 rdf:first Nbf7f247a8ff04fcb8c0d4737894787ef
144 rdf:rest N3f8c0f9583d14a9b951443538d5974b6
145 Nbf7f247a8ff04fcb8c0d4737894787ef schema:familyName Srivastava
146 schema:givenName P.
147 rdf:type schema:Person
148 Nd88eb744c6dc4889ab15519dcf150196 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Nfb760b78c9394a42b476f27a37fa2588 rdf:first sg:person.015161714675.98
151 rdf:rest N3ac9db0a431c47929104a81c51d89623
152 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
153 schema:name Chemical Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
156 schema:name Inorganic Chemistry
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
159 schema:name Physical Chemistry (incl. Structural)
160 rdf:type schema:DefinedTerm
161 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
162 schema:name Engineering
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
165 schema:name Materials Engineering
166 rdf:type schema:DefinedTerm
167 sg:journal.1381332 schema:issn 0883-7694
168 1938-1425
169 schema:name MRS Bulletin
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.010042753105.51 schema:familyName Mårtensson
173 schema:givenName N.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042753105.51
175 rdf:type schema:Person
176 sg:person.010602770222.89 schema:familyName Dávila
177 schema:givenName M.E.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602770222.89
179 rdf:type schema:Person
180 sg:person.01216700716.06 schema:familyName Baberschke
181 schema:givenName K.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216700716.06
183 rdf:type schema:Person
184 sg:person.01327015542.12 schema:familyName Wilhelm
185 schema:givenName F.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327015542.12
187 rdf:type schema:Person
188 sg:person.015161714675.98 schema:familyName Arvanitis
189 schema:givenName D.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015161714675.98
191 rdf:type schema:Person
192 sg:person.0627112403.11 schema:familyName Dunn
193 schema:givenName J. Hunter
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627112403.11
195 rdf:type schema:Person
196 sg:pub.10.1007/bfb0102346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011530937
197 https://doi.org/10.1007/bfb0102346
198 rdf:type schema:CreativeWork
199 sg:pub.10.1557/s0883769400045346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067963503
200 https://doi.org/10.1557/s0883769400045346
201 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...