Stochastic Modeling of Grain Structure Formation in Solidification Processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-01

AUTHORS

Michel Rappaz, Charles-André Gandin

ABSTRACT

Besides the numerical tools which have been developed for solving the continuity equations in materials processing, the prediction of microstructures and defects in such processes is becoming an important step in assessing the quality, and ultimately the mechanical properties, of the final products. Because the typical length scales associated with the process and with the microstructure differ widely (typically a factor of 10 4 ), special techniques have to be used when coupling the macroscopic and microscopic levels. This contribution will briefly present some of the modeling tools recently developed for solidification. The trend is now to replace deterministic models used over the last 20 years by stochastic approaches which directly generate computed micrographs. Among those, Monte Carlo techniques originally developed for the grain growth in solids were adapted to the solidification of alloys, and cellular automata models specifically take into account the dendrite growth mechanisms. More... »

PAGES

20-24

References to SciGraph publications

Journal

TITLE

MRS Bulletin

ISSUE

1

VOLUME

19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/s0883769400038811

DOI

http://dx.doi.org/10.1557/s0883769400038811

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067962964


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Rappaz", 
        "givenName": "Michel", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gandin", 
        "givenName": "Charles-Andr\u00e9", 
        "id": "sg:person.011531105347.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531105347.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02657334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035268094", 
          "https://doi.org/10.1007/bf02657334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02670257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040303849", 
          "https://doi.org/10.1007/bf02670257"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-01", 
    "datePublishedReg": "1994-01-01", 
    "description": " Besides the numerical tools which have been developed for solving the continuity equations in materials processing, the prediction of microstructures and defects in such processes is becoming an important step in assessing the quality, and ultimately the mechanical properties, of the final products. Because the typical length scales associated with the process and with the microstructure differ widely (typically a factor of 10 4 ), special techniques have to be used when coupling the macroscopic and microscopic levels. This contribution will briefly present some of the modeling tools recently developed for solidification. The trend is now to replace deterministic models used over the last 20 years by stochastic approaches which directly generate computed micrographs. Among those, Monte Carlo techniques originally developed for the grain growth in solids were adapted to the solidification of alloys, and cellular automata models specifically take into account the dendrite growth mechanisms. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/s0883769400038811", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1381332", 
        "issn": [
          "0883-7694", 
          "1938-1425"
        ], 
        "name": "MRS Bulletin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "grain structure formation", 
      "prediction of microstructure", 
      "solidification of alloys", 
      "dendrite growth mechanism", 
      "mechanical properties", 
      "solidification process", 
      "material processing", 
      "grain growth", 
      "numerical tool", 
      "typical length scale", 
      "continuity equation", 
      "Monte Carlo technique", 
      "growth mechanism", 
      "length scales", 
      "microstructure", 
      "solidification", 
      "stochastic modeling", 
      "stochastic approach", 
      "Carlo technique", 
      "deterministic model", 
      "modeling tools", 
      "final product", 
      "structure formation", 
      "cellular automata model", 
      "alloy", 
      "special techniques", 
      "automata model", 
      "process", 
      "solids", 
      "micrographs", 
      "technique", 
      "equations", 
      "such processes", 
      "modeling", 
      "properties", 
      "model", 
      "microscopic level", 
      "processing", 
      "important step", 
      "prediction", 
      "defects", 
      "tool", 
      "step", 
      "formation", 
      "account", 
      "products", 
      "approach", 
      "scale", 
      "quality", 
      "mechanism", 
      "contribution", 
      "growth", 
      "trends", 
      "levels", 
      "years"
    ], 
    "name": "Stochastic Modeling of Grain Structure Formation in Solidification Processes", 
    "pagination": "20-24", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067962964"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/s0883769400038811"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/s0883769400038811", 
      "https://app.dimensions.ai/details/publication/pub.1067962964"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_257.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/s0883769400038811"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/s0883769400038811'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/s0883769400038811'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/s0883769400038811'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/s0883769400038811'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      82 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/s0883769400038811 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8b559d02a08048f98d6e646d836f7512
4 schema:citation sg:pub.10.1007/bf02657334
5 sg:pub.10.1007/bf02670257
6 schema:datePublished 1994-01
7 schema:datePublishedReg 1994-01-01
8 schema:description Besides the numerical tools which have been developed for solving the continuity equations in materials processing, the prediction of microstructures and defects in such processes is becoming an important step in assessing the quality, and ultimately the mechanical properties, of the final products. Because the typical length scales associated with the process and with the microstructure differ widely (typically a factor of 10 4 ), special techniques have to be used when coupling the macroscopic and microscopic levels. This contribution will briefly present some of the modeling tools recently developed for solidification. The trend is now to replace deterministic models used over the last 20 years by stochastic approaches which directly generate computed micrographs. Among those, Monte Carlo techniques originally developed for the grain growth in solids were adapted to the solidification of alloys, and cellular automata models specifically take into account the dendrite growth mechanisms.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N02be083587054af1be31a14c6dd41675
12 N36d4cef35ae842fbac11e83b9b668933
13 sg:journal.1381332
14 schema:keywords Carlo technique
15 Monte Carlo technique
16 account
17 alloy
18 approach
19 automata model
20 cellular automata model
21 continuity equation
22 contribution
23 defects
24 dendrite growth mechanism
25 deterministic model
26 equations
27 final product
28 formation
29 grain growth
30 grain structure formation
31 growth
32 growth mechanism
33 important step
34 length scales
35 levels
36 material processing
37 mechanical properties
38 mechanism
39 micrographs
40 microscopic level
41 microstructure
42 model
43 modeling
44 modeling tools
45 numerical tool
46 prediction
47 prediction of microstructure
48 process
49 processing
50 products
51 properties
52 quality
53 scale
54 solidification
55 solidification of alloys
56 solidification process
57 solids
58 special techniques
59 step
60 stochastic approach
61 stochastic modeling
62 structure formation
63 such processes
64 technique
65 tool
66 trends
67 typical length scale
68 years
69 schema:name Stochastic Modeling of Grain Structure Formation in Solidification Processes
70 schema:pagination 20-24
71 schema:productId N0d369ad22c6545b9aaff69528237705a
72 Ndd8414715fd04bfc8eb52da3e93b014c
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067962964
74 https://doi.org/10.1557/s0883769400038811
75 schema:sdDatePublished 2022-10-01T06:29
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N939aca8cd0244ea59c53a8d61a8a35f0
78 schema:url https://doi.org/10.1557/s0883769400038811
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N02be083587054af1be31a14c6dd41675 schema:volumeNumber 19
83 rdf:type schema:PublicationVolume
84 N0d369ad22c6545b9aaff69528237705a schema:name doi
85 schema:value 10.1557/s0883769400038811
86 rdf:type schema:PropertyValue
87 N2afe1853872b4daeafd8151cd81c91b7 rdf:first sg:person.011531105347.30
88 rdf:rest rdf:nil
89 N36d4cef35ae842fbac11e83b9b668933 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N8b559d02a08048f98d6e646d836f7512 rdf:first sg:person.013657516157.10
92 rdf:rest N2afe1853872b4daeafd8151cd81c91b7
93 N939aca8cd0244ea59c53a8d61a8a35f0 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ndd8414715fd04bfc8eb52da3e93b014c schema:name dimensions_id
96 schema:value pub.1067962964
97 rdf:type schema:PropertyValue
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
102 schema:name Materials Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1381332 schema:issn 0883-7694
105 1938-1425
106 schema:name MRS Bulletin
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.011531105347.30 schema:familyName Gandin
110 schema:givenName Charles-André
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531105347.30
112 rdf:type schema:Person
113 sg:person.013657516157.10 schema:familyName Rappaz
114 schema:givenName Michel
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
116 rdf:type schema:Person
117 sg:pub.10.1007/bf02657334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268094
118 https://doi.org/10.1007/bf02657334
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf02670257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303849
121 https://doi.org/10.1007/bf02670257
122 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...