Size Effect in the Initiation of Plasticity for Ceramics in Nanoscale Contact Loading View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006

AUTHORS

Tingting Zhu, X.D. Hou, C. J. Walker, K. M.Y. P'ng, D. J. Dunstan, A. J. Bushby

ABSTRACT

In nanoindentation, the plasticity size effect has been observed for several years, where a higher hardness is measured as indenter size decreases. In this paper, we report the size effect on the initiation of plasticity in ceramics by using spherical indenters. Here, we show a clear method that is able to determine the details of the onset of plasticity in nanoindentation. This enables us to measure the yield pressure with a high degree of accuracy and over a large range of indenter radii (hundreds of nanometers to several tens of micrometers). Our data shows clearly that there is a significant yield strength enhancement, which is inversely proportional to the cube root of the indenter radius. Also after normalization by the bulk yield strength, the increase in yield strength with decreasing indenter radius is shown to follow a single relation for all the ceramics studied in agreement with recent results for metals [1], and consistent with critical thickness theory for the initiation of yielding over a finite volume. More... »

PAGES

0976-ee06-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/proc-976-0976-ee06-12

DOI

http://dx.doi.org/10.1557/proc-976-0976-ee06-12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1115925656


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London, Materials, Mile End Road, London, E1 4NS, United Kingdom, 02078827418", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Queen Mary University of London, Materials, Mile End Road, London, E1 4NS, United Kingdom, 02078827418"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Tingting", 
        "id": "sg:person.011077475053.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011077475053.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London, Department of Materials, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Queen Mary University of London, Department of Materials, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "X.D.", 
        "id": "sg:person.013502241553.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502241553.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C.J.Walker@qmul.ac.uk, Queen Mary University of London, Department of Physics, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "C.J.Walker@qmul.ac.uk, Queen Mary University of London, Department of Physics, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walker", 
        "givenName": "C. J.", 
        "id": "sg:person.015460340053.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015460340053.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London, Department of Materials, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Queen Mary University of London, Department of Materials, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P'ng", 
        "givenName": "K. M.Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London, Department of Physics, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Queen Mary University of London, Department of Physics, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunstan", 
        "givenName": "D. J.", 
        "id": "sg:person.016646041113.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646041113.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London, Department of Materials, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Queen Mary University of London, Department of Materials, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bushby", 
        "givenName": "A. J.", 
        "id": "sg:person.0604146440.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604146440.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.2001.0286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007283385", 
          "https://doi.org/10.1557/jmr.2001.0286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-649-q7.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067950114", 
          "https://doi.org/10.1557/proc-649-q7.17"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Abstract In nanoindentation, the plasticity size effect has been observed for several years, where a higher hardness is measured as indenter size decreases. In this paper, we report the size effect on the initiation of plasticity in ceramics by using spherical indenters. Here, we show a clear method that is able to determine the details of the onset of plasticity in nanoindentation. This enables us to measure the yield pressure with a high degree of accuracy and over a large range of indenter radii (hundreds of nanometers to several tens of micrometers). Our data shows clearly that there is a significant yield strength enhancement, which is inversely proportional to the cube root of the indenter radius. Also after normalization by the bulk yield strength, the increase in yield strength with decreasing indenter radius is shown to follow a single relation for all the ceramics studied in agreement with recent results for metals [1], and consistent with critical thickness theory for the initiation of yielding over a finite volume.", 
    "genre": "article", 
    "id": "sg:pub.10.1557/proc-976-0976-ee06-12", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297379", 
        "issn": [
          "0272-9172", 
          "2059-8521"
        ], 
        "name": "MRS Advances", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "976"
      }
    ], 
    "keywords": [
      "initiation of plasticity", 
      "indenter radius", 
      "yield strength", 
      "bulk yield strength", 
      "size effect", 
      "yield strength enhancement", 
      "plasticity size effects", 
      "onset of plasticity", 
      "critical thickness theory", 
      "contact loading", 
      "spherical indenter", 
      "high hardness", 
      "strength enhancement", 
      "yield pressure", 
      "ceramics", 
      "nanoindentation", 
      "finite volume", 
      "size decreases", 
      "strength", 
      "indenter", 
      "large range", 
      "hardness", 
      "radius", 
      "cube root", 
      "loading", 
      "metals", 
      "accuracy", 
      "pressure", 
      "effect", 
      "enhancement", 
      "high degree", 
      "agreement", 
      "range", 
      "plasticity", 
      "clear method", 
      "method", 
      "detail", 
      "recent results", 
      "single relation", 
      "volume", 
      "results", 
      "initiation", 
      "increase", 
      "decrease", 
      "theory", 
      "degree", 
      "data", 
      "relation", 
      "roots", 
      "onset", 
      "normalization", 
      "years", 
      "paper"
    ], 
    "name": "Size Effect in the Initiation of Plasticity for Ceramics in Nanoscale Contact Loading", 
    "pagination": "0976-ee06-12", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1115925656"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/proc-976-0976-ee06-12"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/proc-976-0976-ee06-12", 
      "https://app.dimensions.ai/details/publication/pub.1115925656"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_419.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/proc-976-0976-ee06-12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-976-0976-ee06-12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-976-0976-ee06-12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-976-0976-ee06-12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-976-0976-ee06-12'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      22 PREDICATES      80 URIs      70 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/proc-976-0976-ee06-12 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8e98584a7b634f96a6f99bdaceabd705
4 schema:citation sg:pub.10.1557/jmr.2001.0286
5 sg:pub.10.1557/proc-649-q7.17
6 schema:datePublished 2006
7 schema:datePublishedReg 2006-01-01
8 schema:description Abstract In nanoindentation, the plasticity size effect has been observed for several years, where a higher hardness is measured as indenter size decreases. In this paper, we report the size effect on the initiation of plasticity in ceramics by using spherical indenters. Here, we show a clear method that is able to determine the details of the onset of plasticity in nanoindentation. This enables us to measure the yield pressure with a high degree of accuracy and over a large range of indenter radii (hundreds of nanometers to several tens of micrometers). Our data shows clearly that there is a significant yield strength enhancement, which is inversely proportional to the cube root of the indenter radius. Also after normalization by the bulk yield strength, the increase in yield strength with decreasing indenter radius is shown to follow a single relation for all the ceramics studied in agreement with recent results for metals [1], and consistent with critical thickness theory for the initiation of yielding over a finite volume.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N456548bff14a4b14a69ea82300242dd4
13 sg:journal.1297379
14 schema:keywords accuracy
15 agreement
16 bulk yield strength
17 ceramics
18 clear method
19 contact loading
20 critical thickness theory
21 cube root
22 data
23 decrease
24 degree
25 detail
26 effect
27 enhancement
28 finite volume
29 hardness
30 high degree
31 high hardness
32 increase
33 indenter
34 indenter radius
35 initiation
36 initiation of plasticity
37 large range
38 loading
39 metals
40 method
41 nanoindentation
42 normalization
43 onset
44 onset of plasticity
45 paper
46 plasticity
47 plasticity size effects
48 pressure
49 radius
50 range
51 recent results
52 relation
53 results
54 roots
55 single relation
56 size decreases
57 size effect
58 spherical indenter
59 strength
60 strength enhancement
61 theory
62 volume
63 years
64 yield pressure
65 yield strength
66 yield strength enhancement
67 schema:name Size Effect in the Initiation of Plasticity for Ceramics in Nanoscale Contact Loading
68 schema:pagination 0976-ee06-12
69 schema:productId N34ae56389e6244fda82cd52b406fd440
70 N983d346886794c0ba4d6ebf7d98f866c
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115925656
72 https://doi.org/10.1557/proc-976-0976-ee06-12
73 schema:sdDatePublished 2022-06-01T22:06
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nf788afe59088458d8502adbdafe05ef0
76 schema:url https://doi.org/10.1557/proc-976-0976-ee06-12
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N246034a5c2da452e82b5478ab6cbbbe2 rdf:first sg:person.016646041113.50
81 rdf:rest Nd4c5f075d47f49e8907cd1eb36dcb41e
82 N34ae56389e6244fda82cd52b406fd440 schema:name dimensions_id
83 schema:value pub.1115925656
84 rdf:type schema:PropertyValue
85 N456548bff14a4b14a69ea82300242dd4 schema:volumeNumber 976
86 rdf:type schema:PublicationVolume
87 N860870a098b24e128f7aed41f09ce6aa rdf:first sg:person.015460340053.65
88 rdf:rest N9813af8e75734f77887a509a861cbfda
89 N8e98584a7b634f96a6f99bdaceabd705 rdf:first sg:person.011077475053.94
90 rdf:rest Na97bafe188a741d4a91b17d73e24a572
91 N9813af8e75734f77887a509a861cbfda rdf:first Ne9fa94789a0244318c298852352778ae
92 rdf:rest N246034a5c2da452e82b5478ab6cbbbe2
93 N983d346886794c0ba4d6ebf7d98f866c schema:name doi
94 schema:value 10.1557/proc-976-0976-ee06-12
95 rdf:type schema:PropertyValue
96 Na97bafe188a741d4a91b17d73e24a572 rdf:first sg:person.013502241553.94
97 rdf:rest N860870a098b24e128f7aed41f09ce6aa
98 Nd4c5f075d47f49e8907cd1eb36dcb41e rdf:first sg:person.0604146440.18
99 rdf:rest rdf:nil
100 Ne9fa94789a0244318c298852352778ae schema:affiliation grid-institutes:grid.4868.2
101 schema:familyName P'ng
102 schema:givenName K. M.Y.
103 rdf:type schema:Person
104 Nf788afe59088458d8502adbdafe05ef0 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
107 schema:name Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
110 schema:name Materials Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1297379 schema:issn 0272-9172
113 2059-8521
114 schema:name MRS Advances
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.011077475053.94 schema:affiliation grid-institutes:grid.4868.2
118 schema:familyName Zhu
119 schema:givenName Tingting
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011077475053.94
121 rdf:type schema:Person
122 sg:person.013502241553.94 schema:affiliation grid-institutes:grid.4868.2
123 schema:familyName Hou
124 schema:givenName X.D.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502241553.94
126 rdf:type schema:Person
127 sg:person.015460340053.65 schema:affiliation grid-institutes:grid.4868.2
128 schema:familyName Walker
129 schema:givenName C. J.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015460340053.65
131 rdf:type schema:Person
132 sg:person.016646041113.50 schema:affiliation grid-institutes:grid.4868.2
133 schema:familyName Dunstan
134 schema:givenName D. J.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646041113.50
136 rdf:type schema:Person
137 sg:person.0604146440.18 schema:affiliation grid-institutes:grid.4868.2
138 schema:familyName Bushby
139 schema:givenName A. J.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604146440.18
141 rdf:type schema:Person
142 sg:pub.10.1557/jmr.2001.0286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007283385
143 https://doi.org/10.1557/jmr.2001.0286
144 rdf:type schema:CreativeWork
145 sg:pub.10.1557/proc-649-q7.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067950114
146 https://doi.org/10.1557/proc-649-q7.17
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.4868.2 schema:alternateName C.J.Walker@qmul.ac.uk, Queen Mary University of London, Department of Physics, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom
149 Queen Mary University of London, Department of Materials, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom
150 Queen Mary University of London, Department of Physics, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom
151 Queen Mary University of London, Materials, Mile End Road, London, E1 4NS, United Kingdom, 02078827418
152 schema:name C.J.Walker@qmul.ac.uk, Queen Mary University of London, Department of Physics, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom
153 Queen Mary University of London, Department of Materials, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom
154 Queen Mary University of London, Department of Physics, Centre for Materials Research, Mile End Road, London, E1 4NS, United Kingdom
155 Queen Mary University of London, Materials, Mile End Road, London, E1 4NS, United Kingdom, 02078827418
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...