Ontology type: schema:ScholarlyArticle
2006
AUTHORSChristopher S. Griffith, Vittorio Luca, Ferdinand Sebesta, Patrick Yee, Elizabeth Drabarek
ABSTRACTABSTRACT Immobilization of adsorbed Cs + and Sr 2+ on a molybdenum-doped, hexagonal tungsten bronze (HTB)-polyacrylonitrile (PAN) composite adsorbent can be achieved by heating in air at temperatures in the range 600 - 1200 °C. Thermal treatment of the parent composite material at 800 – 1000 °C undergoes a ca. 60% reduction in volume and retains its spherical morphology. For materials prepared at 800 – 1200 °C the full complement of Cs + and the majority of Sr 2+ partition into HTB phases (A∼0.16-0.3MO 3 ; A = Cs, Sr, Na; M = Mo,W), along with sodium cations. The presence of high concentrations of Na + relative to either Cs + or Sr 2+ does not appear to interfere with the formation of the HTB phase. The fraction ( f ) of Cs + and Sr 2+ leached from the tungstate phase assemblages is better or comparable with cesium hollandite (Cs 0.8 Ba 0.4 Ti 8 O 18 ; f = ca. 8 × 10 −5 ; rate = <1.2 × 10 −4 g m −2 d −1 ) and strontium titanate (SrTiO 3 ; f = 3.1 × 10 −3 ; rate = 2.63 × 10 −4 g m −2 day −1 ), respectively, using a modified PCT test. Furthermore, where aggressive leaching conditions are employed (0.1M HNO 3 ; 150 °C; 4 days), the tungstate phase assemblages display leach resistance orders of magnitude better than the reference phases (Cs + - f = ca. 5 × 10 − 3 ; rate = ca. 1.4 × 10 −3 g m −2 day −1 ; Sr 2+ - f = ca. 8 × 10 −2 ; rate = ca. 2.5 × 10 −2 g m −2 day −1 ). More... »
PAGES57.1
http://scigraph.springernature.com/pub.10.1557/proc-932-57.1
DOIhttp://dx.doi.org/10.1557/proc-932-57.1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1067961552
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia",
"id": "http://www.grid.ac/institutes/grid.1089.0",
"name": [
"Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia"
],
"type": "Organization"
},
"familyName": "Griffith",
"givenName": "Christopher S.",
"id": "sg:person.011605365302.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011605365302.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia",
"id": "http://www.grid.ac/institutes/grid.1089.0",
"name": [
"Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia"
],
"type": "Organization"
},
"familyName": "Luca",
"givenName": "Vittorio",
"id": "sg:person.01230275121.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230275121.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Czech Technical University in Prague, Department of Nuclear Chemistry, B\u0159ehov\u00e1 7, 115 19 Prague 1, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.6652.7",
"name": [
"Czech Technical University in Prague, Department of Nuclear Chemistry, B\u0159ehov\u00e1 7, 115 19 Prague 1, Czech Republic"
],
"type": "Organization"
},
"familyName": "Sebesta",
"givenName": "Ferdinand",
"id": "sg:person.014502716325.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014502716325.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia",
"id": "http://www.grid.ac/institutes/grid.1089.0",
"name": [
"Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia"
],
"type": "Organization"
},
"familyName": "Yee",
"givenName": "Patrick",
"id": "sg:person.012137434042.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012137434042.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia",
"id": "http://www.grid.ac/institutes/grid.1089.0",
"name": [
"Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia"
],
"type": "Organization"
},
"familyName": "Drabarek",
"givenName": "Elizabeth",
"id": "sg:person.015315204337.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015315204337.48"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1557/proc-807-303",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067958057",
"https://doi.org/10.1557/proc-807-303"
],
"type": "CreativeWork"
}
],
"datePublished": "2006",
"datePublishedReg": "2006-01-01",
"description": "ABSTRACT Immobilization of adsorbed Cs + and Sr 2+ on a molybdenum-doped, hexagonal tungsten bronze (HTB)-polyacrylonitrile (PAN) composite adsorbent can be achieved by heating in air at temperatures in the range 600 - 1200 \u00b0C. Thermal treatment of the parent composite material at 800 \u2013 1000 \u00b0C undergoes a ca. 60% reduction in volume and retains its spherical morphology. For materials prepared at 800 \u2013 1200 \u00b0C the full complement of Cs + and the majority of Sr 2+ partition into HTB phases (A\u223c0.16-0.3MO 3 ; A = Cs, Sr, Na; M = Mo,W), along with sodium cations. The presence of high concentrations of Na + relative to either Cs + or Sr 2+ does not appear to interfere with the formation of the HTB phase. The fraction ( f ) of Cs + and Sr 2+ leached from the tungstate phase assemblages is better or comparable with cesium hollandite (Cs 0.8 Ba 0.4 Ti 8 O 18 ; f = ca. 8 \u00d7 10 \u22125 ; rate = <1.2 \u00d7 10 \u22124 g m \u22122 d \u22121 ) and strontium titanate (SrTiO 3 ; f = 3.1 \u00d7 10 \u22123 ; rate = 2.63 \u00d7 10 \u22124 g m \u22122 day \u22121 ), respectively, using a modified PCT test. Furthermore, where aggressive leaching conditions are employed (0.1M HNO 3 ; 150 \u00b0C; 4 days), the tungstate phase assemblages display leach resistance orders of magnitude better than the reference phases (Cs + - f = ca. 5 \u00d7 10 \u2212 3 ; rate = ca. 1.4 \u00d7 10 \u22123 g m \u22122 day \u22121 ; Sr 2+ - f = ca. 8 \u00d7 10 \u22122 ; rate = ca. 2.5 \u00d7 10 \u22122 g m \u22122 day \u22121 ). ",
"genre": "article",
"id": "sg:pub.10.1557/proc-932-57.1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297379",
"issn": [
"0272-9172",
"2059-8521"
],
"name": "MRS Advances",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"type": "PublicationVolume",
"volumeNumber": "932"
}
],
"keywords": [
"HTB phase",
"composite materials",
"composite adsorbent",
"leaching conditions",
"strontium titanate",
"resistance order",
"thermal treatment",
"tungstate phase",
"range 600",
"spherical morphology",
"phase assemblage",
"Sr 2",
"materials",
"tungsten bronze",
"wasteforms",
"titanate",
"adsorber",
"adsorbent",
"phase",
"air",
"temperature",
"PCT test",
"bronze",
"morphology",
"strontium",
"cesium",
"hollandite",
"conditions",
"magnitude",
"order",
"CS",
"test",
"high concentrations",
"reduction",
"immobilization",
"fraction",
"volume",
"formation",
"reference",
"sodium cations",
"concentration",
"Cs",
"undergoes",
"Abstract",
"Ca",
"Na",
"partition",
"hexagonal tungsten bronze",
"presence",
"cations",
"treatment",
"complement",
"majority",
"full complement",
"assemblages",
"relatives"
],
"name": "Leach Resistant Cesium and Strontium-bearing Wasteforms from Hexagonal Tungsten Bronze-Polyacrylonitrile Composite Adsorbers",
"pagination": "57.1",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1067961552"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1557/proc-932-57.1"
]
}
],
"sameAs": [
"https://doi.org/10.1557/proc-932-57.1",
"https://app.dimensions.ai/details/publication/pub.1067961552"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_414.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1557/proc-932-57.1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-932-57.1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-932-57.1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-932-57.1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-932-57.1'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
22 PREDICATES
82 URIs
73 LITERALS
5 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1557/proc-932-57.1 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N5b8cf3963797496998f97a2b4266baf8 |
4 | ″ | schema:citation | sg:pub.10.1557/proc-807-303 |
5 | ″ | schema:datePublished | 2006 |
6 | ″ | schema:datePublishedReg | 2006-01-01 |
7 | ″ | schema:description | ABSTRACT Immobilization of adsorbed Cs + and Sr 2+ on a molybdenum-doped, hexagonal tungsten bronze (HTB)-polyacrylonitrile (PAN) composite adsorbent can be achieved by heating in air at temperatures in the range 600 - 1200 °C. Thermal treatment of the parent composite material at 800 – 1000 °C undergoes a ca. 60% reduction in volume and retains its spherical morphology. For materials prepared at 800 – 1200 °C the full complement of Cs + and the majority of Sr 2+ partition into HTB phases (A∼0.16-0.3MO 3 ; A = Cs, Sr, Na; M = Mo,W), along with sodium cations. The presence of high concentrations of Na + relative to either Cs + or Sr 2+ does not appear to interfere with the formation of the HTB phase. The fraction ( f ) of Cs + and Sr 2+ leached from the tungstate phase assemblages is better or comparable with cesium hollandite (Cs 0.8 Ba 0.4 Ti 8 O 18 ; f = ca. 8 × 10 −5 ; rate = <1.2 × 10 −4 g m −2 d −1 ) and strontium titanate (SrTiO 3 ; f = 3.1 × 10 −3 ; rate = 2.63 × 10 −4 g m −2 day −1 ), respectively, using a modified PCT test. Furthermore, where aggressive leaching conditions are employed (0.1M HNO 3 ; 150 °C; 4 days), the tungstate phase assemblages display leach resistance orders of magnitude better than the reference phases (Cs + - f = ca. 5 × 10 − 3 ; rate = ca. 1.4 × 10 −3 g m −2 day −1 ; Sr 2+ - f = ca. 8 × 10 −2 ; rate = ca. 2.5 × 10 −2 g m −2 day −1 ). |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N7d9df10d69bf4e97ac4a580e5be3ea91 |
12 | ″ | ″ | sg:journal.1297379 |
13 | ″ | schema:keywords | Abstract |
14 | ″ | ″ | CS |
15 | ″ | ″ | Ca |
16 | ″ | ″ | Cs |
17 | ″ | ″ | HTB phase |
18 | ″ | ″ | Na |
19 | ″ | ″ | PCT test |
20 | ″ | ″ | Sr 2 |
21 | ″ | ″ | adsorbent |
22 | ″ | ″ | adsorber |
23 | ″ | ″ | air |
24 | ″ | ″ | assemblages |
25 | ″ | ″ | bronze |
26 | ″ | ″ | cations |
27 | ″ | ″ | cesium |
28 | ″ | ″ | complement |
29 | ″ | ″ | composite adsorbent |
30 | ″ | ″ | composite materials |
31 | ″ | ″ | concentration |
32 | ″ | ″ | conditions |
33 | ″ | ″ | formation |
34 | ″ | ″ | fraction |
35 | ″ | ″ | full complement |
36 | ″ | ″ | hexagonal tungsten bronze |
37 | ″ | ″ | high concentrations |
38 | ″ | ″ | hollandite |
39 | ″ | ″ | immobilization |
40 | ″ | ″ | leaching conditions |
41 | ″ | ″ | magnitude |
42 | ″ | ″ | majority |
43 | ″ | ″ | materials |
44 | ″ | ″ | morphology |
45 | ″ | ″ | order |
46 | ″ | ″ | partition |
47 | ″ | ″ | phase |
48 | ″ | ″ | phase assemblage |
49 | ″ | ″ | presence |
50 | ″ | ″ | range 600 |
51 | ″ | ″ | reduction |
52 | ″ | ″ | reference |
53 | ″ | ″ | relatives |
54 | ″ | ″ | resistance order |
55 | ″ | ″ | sodium cations |
56 | ″ | ″ | spherical morphology |
57 | ″ | ″ | strontium |
58 | ″ | ″ | strontium titanate |
59 | ″ | ″ | temperature |
60 | ″ | ″ | test |
61 | ″ | ″ | thermal treatment |
62 | ″ | ″ | titanate |
63 | ″ | ″ | treatment |
64 | ″ | ″ | tungstate phase |
65 | ″ | ″ | tungsten bronze |
66 | ″ | ″ | undergoes |
67 | ″ | ″ | volume |
68 | ″ | ″ | wasteforms |
69 | ″ | schema:name | Leach Resistant Cesium and Strontium-bearing Wasteforms from Hexagonal Tungsten Bronze-Polyacrylonitrile Composite Adsorbers |
70 | ″ | schema:pagination | 57.1 |
71 | ″ | schema:productId | N1f5fabc1593b48d481a6fe2deb9d25d1 |
72 | ″ | ″ | N876b0870f6e24298bd272fd4710c5710 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067961552 |
74 | ″ | ″ | https://doi.org/10.1557/proc-932-57.1 |
75 | ″ | schema:sdDatePublished | 2022-05-20T07:23 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | N602e8f9929f544b1aac09c8b6da675f7 |
78 | ″ | schema:url | https://doi.org/10.1557/proc-932-57.1 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N1f5fabc1593b48d481a6fe2deb9d25d1 | schema:name | dimensions_id |
83 | ″ | schema:value | pub.1067961552 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N58692f750ef44025bc2df52e65cc7cad | rdf:first | sg:person.012137434042.98 |
86 | ″ | rdf:rest | Ne9da3817dd6343349aec5168a7db8c92 |
87 | N5b8cf3963797496998f97a2b4266baf8 | rdf:first | sg:person.011605365302.11 |
88 | ″ | rdf:rest | Nbd4487b4b29f4d7887c363998b32e015 |
89 | N602e8f9929f544b1aac09c8b6da675f7 | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | N7d9df10d69bf4e97ac4a580e5be3ea91 | schema:volumeNumber | 932 |
92 | ″ | rdf:type | schema:PublicationVolume |
93 | N876b0870f6e24298bd272fd4710c5710 | schema:name | doi |
94 | ″ | schema:value | 10.1557/proc-932-57.1 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | Nbd4487b4b29f4d7887c363998b32e015 | rdf:first | sg:person.01230275121.16 |
97 | ″ | rdf:rest | Nf75256f242424c9ba48df04402951983 |
98 | Ne9da3817dd6343349aec5168a7db8c92 | rdf:first | sg:person.015315204337.48 |
99 | ″ | rdf:rest | rdf:nil |
100 | Nf75256f242424c9ba48df04402951983 | rdf:first | sg:person.014502716325.78 |
101 | ″ | rdf:rest | N58692f750ef44025bc2df52e65cc7cad |
102 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Engineering |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Materials Engineering |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1297379 | schema:issn | 0272-9172 |
109 | ″ | ″ | 2059-8521 |
110 | ″ | schema:name | MRS Advances |
111 | ″ | schema:publisher | Springer Nature |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.011605365302.11 | schema:affiliation | grid-institutes:grid.1089.0 |
114 | ″ | schema:familyName | Griffith |
115 | ″ | schema:givenName | Christopher S. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011605365302.11 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.012137434042.98 | schema:affiliation | grid-institutes:grid.1089.0 |
119 | ″ | schema:familyName | Yee |
120 | ″ | schema:givenName | Patrick |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012137434042.98 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.01230275121.16 | schema:affiliation | grid-institutes:grid.1089.0 |
124 | ″ | schema:familyName | Luca |
125 | ″ | schema:givenName | Vittorio |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230275121.16 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.014502716325.78 | schema:affiliation | grid-institutes:grid.6652.7 |
129 | ″ | schema:familyName | Sebesta |
130 | ″ | schema:givenName | Ferdinand |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014502716325.78 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.015315204337.48 | schema:affiliation | grid-institutes:grid.1089.0 |
134 | ″ | schema:familyName | Drabarek |
135 | ″ | schema:givenName | Elizabeth |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015315204337.48 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1557/proc-807-303 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067958057 |
139 | ″ | ″ | https://doi.org/10.1557/proc-807-303 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | grid-institutes:grid.1089.0 | schema:alternateName | Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia |
142 | ″ | schema:name | Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia |
143 | ″ | rdf:type | schema:Organization |
144 | grid-institutes:grid.6652.7 | schema:alternateName | Czech Technical University in Prague, Department of Nuclear Chemistry, Břehová 7, 115 19 Prague 1, Czech Republic |
145 | ″ | schema:name | Czech Technical University in Prague, Department of Nuclear Chemistry, Břehová 7, 115 19 Prague 1, Czech Republic |
146 | ″ | rdf:type | schema:Organization |