Microstructures and properties of the tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002

AUTHORS

Haein Choi-Yim, Jan Schroers, William L. Johnson

ABSTRACT

ABSTRACT Tungsten wire or particle reinforced metallic glass matrix composites are produced by infiltrating liquid Zr 57 Nb 5 Al 10 Cu 15.4 Ni 12.6 (Vit106) into tungsten reinforcements at 1150 K and at 1425 K. X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy are carried out to characterize the composite. The matrix of the composite processed at 1150 K is mostly amorphous, with some embedded crystals. During processing, tungsten dissolves in the glass-forming melt and upon quenching precipitates over a relatively narrow zone near the interface between the tungsten and matrix. In the composites processed at 1425 K, tungsten dissolves in the melt and diffuses through the liquid medium, and then reprecipitates upon quenching. The faster kinetics at this high temperature results uniform distribution of the crystals throughout the matrix. Mechanical properties of the differently processed composites containing wires and particles are compared and discussed. The composites exhibit a plasticity of up to 16 % without sacrificing the high strength to failure that is comparable to monolithic Vit 106. More... »

PAGES

cc9.9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/proc-754-cc9.9

DOI

http://dx.doi.org/10.1557/proc-754-cc9.9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067955787


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "W.M. Keck Laboratory of Engineering Materials, Mail Code 138\u201378, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "W.M. Keck Laboratory of Engineering Materials, Mail Code 138\u201378, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi-Yim", 
        "givenName": "Haein", 
        "id": "sg:person.011072167511.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072167511.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "W.M. Keck Laboratory of Engineering Materials, Mail Code 138\u201378, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "W.M. Keck Laboratory of Engineering Materials, Mail Code 138\u201378, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "W.M. Keck Laboratory of Engineering Materials, Mail Code 138\u201378, California Institute of Technology, Pasadena, California 91125, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "W.M. Keck Laboratory of Engineering Materials, Mail Code 138\u201378, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "William L.", 
        "id": "sg:person.01046505045.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046505045.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.2000.0232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034441240", 
          "https://doi.org/10.1557/jmr.2000.0232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "ABSTRACT  Tungsten wire or particle reinforced metallic glass matrix composites are produced by infiltrating liquid Zr 57 Nb 5 Al 10 Cu 15.4 Ni 12.6 (Vit106) into tungsten reinforcements at 1150 K and at 1425 K. X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy are carried out to characterize the composite. The matrix of the composite processed at 1150 K is mostly amorphous, with some embedded crystals. During processing, tungsten dissolves in the glass-forming melt and upon quenching precipitates over a relatively narrow zone near the interface between the tungsten and matrix. In the composites processed at 1425 K, tungsten dissolves in the melt and diffuses through the liquid medium, and then reprecipitates upon quenching. The faster kinetics at this high temperature results uniform distribution of the crystals throughout the matrix. Mechanical properties of the differently processed composites containing wires and particles are compared and discussed. The composites exhibit a plasticity of up to 16 % without sacrificing the high strength to failure that is comparable to monolithic Vit 106. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/proc-754-cc9.9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297379", 
        "issn": [
          "2731-5894", 
          "2059-8521"
        ], 
        "name": "MRS Advances", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "754"
      }
    ], 
    "keywords": [
      "metallic glass matrix composites", 
      "glass matrix composites", 
      "tungsten dissolves", 
      "metallic glass composites", 
      "tungsten reinforcement", 
      "matrix composites", 
      "glass composites", 
      "high strength", 
      "mechanical properties", 
      "composites", 
      "X-ray diffraction", 
      "tungsten wire", 
      "high temperature", 
      "differential scanning calorimetry", 
      "glass-forming melts", 
      "electron microscopy", 
      "fast kinetics", 
      "particles", 
      "scanning calorimetry", 
      "wire", 
      "matrix", 
      "microstructure", 
      "dissolves", 
      "melt", 
      "properties", 
      "narrow zone", 
      "reinforcement", 
      "precipitates", 
      "tungsten", 
      "liquid medium", 
      "interface", 
      "temperature", 
      "diffraction", 
      "strength", 
      "crystals", 
      "microscopy", 
      "calorimetry", 
      "processing", 
      "kinetics", 
      "zone", 
      "distribution", 
      "failure", 
      "medium", 
      "plasticity", 
      "Abstract"
    ], 
    "name": "Microstructures and properties of the tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass composites", 
    "pagination": "cc9.9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067955787"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/proc-754-cc9.9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/proc-754-cc9.9", 
      "https://app.dimensions.ai/details/publication/pub.1067955787"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_358.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/proc-754-cc9.9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-754-cc9.9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-754-cc9.9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-754-cc9.9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-754-cc9.9'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      70 URIs      61 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/proc-754-cc9.9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ncebb265523684e039063dec32a348003
4 schema:citation sg:pub.10.1557/jmr.2000.0232
5 schema:datePublished 2002
6 schema:datePublishedReg 2002-01-01
7 schema:description ABSTRACT Tungsten wire or particle reinforced metallic glass matrix composites are produced by infiltrating liquid Zr 57 Nb 5 Al 10 Cu 15.4 Ni 12.6 (Vit106) into tungsten reinforcements at 1150 K and at 1425 K. X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy are carried out to characterize the composite. The matrix of the composite processed at 1150 K is mostly amorphous, with some embedded crystals. During processing, tungsten dissolves in the glass-forming melt and upon quenching precipitates over a relatively narrow zone near the interface between the tungsten and matrix. In the composites processed at 1425 K, tungsten dissolves in the melt and diffuses through the liquid medium, and then reprecipitates upon quenching. The faster kinetics at this high temperature results uniform distribution of the crystals throughout the matrix. Mechanical properties of the differently processed composites containing wires and particles are compared and discussed. The composites exhibit a plasticity of up to 16 % without sacrificing the high strength to failure that is comparable to monolithic Vit 106.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne2c06be3adbc447faa53633505903a8d
11 sg:journal.1297379
12 schema:keywords Abstract
13 X-ray diffraction
14 calorimetry
15 composites
16 crystals
17 differential scanning calorimetry
18 diffraction
19 dissolves
20 distribution
21 electron microscopy
22 failure
23 fast kinetics
24 glass composites
25 glass matrix composites
26 glass-forming melts
27 high strength
28 high temperature
29 interface
30 kinetics
31 liquid medium
32 matrix
33 matrix composites
34 mechanical properties
35 medium
36 melt
37 metallic glass composites
38 metallic glass matrix composites
39 microscopy
40 microstructure
41 narrow zone
42 particles
43 plasticity
44 precipitates
45 processing
46 properties
47 reinforcement
48 scanning calorimetry
49 strength
50 temperature
51 tungsten
52 tungsten dissolves
53 tungsten reinforcement
54 tungsten wire
55 wire
56 zone
57 schema:name Microstructures and properties of the tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass composites
58 schema:pagination cc9.9
59 schema:productId N9523af4db56b45bbaf78cd56c73e1999
60 Nea27ab2172ca4870a4cea7e1e7e81cd4
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067955787
62 https://doi.org/10.1557/proc-754-cc9.9
63 schema:sdDatePublished 2022-10-01T06:32
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N6d4285fc4fee466eb65bb0e14565bb6a
66 schema:url https://doi.org/10.1557/proc-754-cc9.9
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N2b1e2fc574f6489db7b5654fd28396f4 rdf:first sg:person.01046505045.39
71 rdf:rest rdf:nil
72 N6d4285fc4fee466eb65bb0e14565bb6a schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N9523af4db56b45bbaf78cd56c73e1999 schema:name dimensions_id
75 schema:value pub.1067955787
76 rdf:type schema:PropertyValue
77 Nae19892400524fceaac288bbc41d2ee8 rdf:first sg:person.01145527322.19
78 rdf:rest N2b1e2fc574f6489db7b5654fd28396f4
79 Ncebb265523684e039063dec32a348003 rdf:first sg:person.011072167511.14
80 rdf:rest Nae19892400524fceaac288bbc41d2ee8
81 Ne2c06be3adbc447faa53633505903a8d schema:volumeNumber 754
82 rdf:type schema:PublicationVolume
83 Nea27ab2172ca4870a4cea7e1e7e81cd4 schema:name doi
84 schema:value 10.1557/proc-754-cc9.9
85 rdf:type schema:PropertyValue
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
90 schema:name Materials Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1297379 schema:issn 2059-8521
93 2731-5894
94 schema:name MRS Advances
95 schema:publisher Springer Nature
96 rdf:type schema:Periodical
97 sg:person.01046505045.39 schema:affiliation grid-institutes:grid.20861.3d
98 schema:familyName Johnson
99 schema:givenName William L.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046505045.39
101 rdf:type schema:Person
102 sg:person.011072167511.14 schema:affiliation grid-institutes:grid.20861.3d
103 schema:familyName Choi-Yim
104 schema:givenName Haein
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072167511.14
106 rdf:type schema:Person
107 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.20861.3d
108 schema:familyName Schroers
109 schema:givenName Jan
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
111 rdf:type schema:Person
112 sg:pub.10.1557/jmr.2000.0232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034441240
113 https://doi.org/10.1557/jmr.2000.0232
114 rdf:type schema:CreativeWork
115 grid-institutes:grid.20861.3d schema:alternateName W.M. Keck Laboratory of Engineering Materials, Mail Code 138–78, California Institute of Technology, Pasadena, California 91125, USA
116 schema:name W.M. Keck Laboratory of Engineering Materials, Mail Code 138–78, California Institute of Technology, Pasadena, California 91125, USA
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...