Ontology type: schema:ScholarlyArticle
2002
AUTHORSKinuyo Machi, Sanshiro Nagare, Kenji Hamada, Mamoru Senna
ABSTRACTABSTRACT Self-organized Ag nanodots were deposited on Si(100) by a pulsed laser deposition method. A compact apparatus was specially developed for this purpose with Nd:YAG-laser. Factors dominating size and morphology of the nanodots were examined by systematically varying species and pressure of the gas in the deposition chamber, deposition time, and the target –substrate distance (TSD). Pulse frequency (10Hz), pulse width (8ns) and laser wavelength (266nm) were kept constant. The dot size increased with pressure in the range between 0.005Pa to 1Pa, in Ar gas. At pressures as high as 100Pa, dot size decreased again with slightly different morphology. Increasing deposition time from 3, 5, to 10min brought about an increase in the average dot size from 5±2.1nm, 9±2.4nm, 10±3.0nm, respectively, under the constant Ar pressure, 100Pa. It is particularly to be noted that decreasing TSD from 100mm to 50mm brought about an increase in the dot size from 5±2.1nm to 9±3.3nm at Ar pressure, 100Pa, and deposition time, 3min. We discuss factors making self-organized Ag nanodots, and proposed key values to evaluate homogenize of dots assembly. More... »
PAGESw3.6
http://scigraph.springernature.com/pub.10.1557/proc-749-w3.6
DOIhttp://dx.doi.org/10.1557/proc-749-w3.6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1067955347
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Nara Machinery Co., Ltd. 2\u20135\u20137, Jonanjima, Ootaku, Tokyo 143\u20130002, Japan",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Nara Machinery Co., Ltd. 2\u20135\u20137, Jonanjima, Ootaku, Tokyo 143\u20130002, Japan"
],
"type": "Organization"
},
"familyName": "Machi",
"givenName": "Kinuyo",
"id": "sg:person.015311744043.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311744043.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nara Machinery Co., Ltd. 2\u20135\u20137, Jonanjima, Ootaku, Tokyo 143\u20130002, Japan",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Nara Machinery Co., Ltd. 2\u20135\u20137, Jonanjima, Ootaku, Tokyo 143\u20130002, Japan"
],
"type": "Organization"
},
"familyName": "Nagare",
"givenName": "Sanshiro",
"id": "sg:person.015125537626.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125537626.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nara Machinery Co., Ltd. 2\u20135\u20137, Jonanjima, Ootaku, Tokyo 143\u20130002, Japan",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Nara Machinery Co., Ltd. 2\u20135\u20137, Jonanjima, Ootaku, Tokyo 143\u20130002, Japan"
],
"type": "Organization"
},
"familyName": "Hamada",
"givenName": "Kenji",
"id": "sg:person.015310333670.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310333670.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Science and Technology, Keio University, 3.14\u20131, Hiyoshi, Yokohama, Japan",
"id": "http://www.grid.ac/institutes/grid.26091.3c",
"name": [
"Faculty of Science and Technology, Keio University, 3.14\u20131, Hiyoshi, Yokohama, Japan"
],
"type": "Organization"
},
"familyName": "Senna",
"givenName": "Mamoru",
"id": "sg:person.011363404413.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363404413.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s003399900169",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052058955",
"https://doi.org/10.1007/s003399900169"
],
"type": "CreativeWork"
}
],
"datePublished": "2002",
"datePublishedReg": "2002-01-01",
"description": "ABSTRACT Self-organized Ag nanodots were deposited on Si(100) by a pulsed laser deposition method. A compact apparatus was specially developed for this purpose with Nd:YAG-laser. Factors dominating size and morphology of the nanodots were examined by systematically varying species and pressure of the gas in the deposition chamber, deposition time, and the target \u2013substrate distance (TSD). Pulse frequency (10Hz), pulse width (8ns) and laser wavelength (266nm) were kept constant. The dot size increased with pressure in the range between 0.005Pa to 1Pa, in Ar gas. At pressures as high as 100Pa, dot size decreased again with slightly different morphology. Increasing deposition time from 3, 5, to 10min brought about an increase in the average dot size from 5\u00b12.1nm, 9\u00b12.4nm, 10\u00b13.0nm, respectively, under the constant Ar pressure, 100Pa. It is particularly to be noted that decreasing TSD from 100mm to 50mm brought about an increase in the dot size from 5\u00b12.1nm to 9\u00b13.3nm at Ar pressure, 100Pa, and deposition time, 3min. We discuss factors making self-organized Ag nanodots, and proposed key values to evaluate homogenize of dots assembly.",
"genre": "article",
"id": "sg:pub.10.1557/proc-749-w3.6",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297379",
"issn": [
"0272-9172",
"2059-8521"
],
"name": "MRS Advances",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"type": "PublicationVolume",
"volumeNumber": "749"
}
],
"keywords": [
"target-substrate distance",
"Ag nanodots",
"deposition time",
"dot size",
"Ag quantum dots",
"average dot size",
"laser deposition method",
"morphology control",
"deposition method",
"dot assemblies",
"quantum dots",
"nanodots",
"different morphologies",
"Ar pressure",
"deposition chamber",
"pulsed laser",
"laser wavelength",
"compact apparatus",
"Ar gas",
"morphology",
"size",
"dots",
"constant Ar pressure",
"YAG laser",
"wavelength",
"pulse width",
"PA",
"assembly",
"pulse frequency",
"gas",
"range",
"Nd",
"time",
"width",
"method",
"frequency",
"key values",
"distance",
"homogenize",
"chamber",
"increase",
"pressure",
"ABSTRACT Self",
"apparatus",
"control",
"values",
"self",
"purpose",
"factors",
"species"
],
"name": "Morphology Control of Pulsed-Laser Deposited Ag Quantum Dots",
"pagination": "w3.6",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1067955347"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1557/proc-749-w3.6"
]
}
],
"sameAs": [
"https://doi.org/10.1557/proc-749-w3.6",
"https://app.dimensions.ai/details/publication/pub.1067955347"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_357.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1557/proc-749-w3.6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-749-w3.6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-749-w3.6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-749-w3.6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-749-w3.6'
This table displays all metadata directly associated to this object as RDF triples.
132 TRIPLES
21 PREDICATES
75 URIs
66 LITERALS
5 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1557/proc-749-w3.6 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N91508b14490c41cbbebed8c77e92d928 |
4 | ″ | schema:citation | sg:pub.10.1007/s003399900169 |
5 | ″ | schema:datePublished | 2002 |
6 | ″ | schema:datePublishedReg | 2002-01-01 |
7 | ″ | schema:description | ABSTRACT Self-organized Ag nanodots were deposited on Si(100) by a pulsed laser deposition method. A compact apparatus was specially developed for this purpose with Nd:YAG-laser. Factors dominating size and morphology of the nanodots were examined by systematically varying species and pressure of the gas in the deposition chamber, deposition time, and the target –substrate distance (TSD). Pulse frequency (10Hz), pulse width (8ns) and laser wavelength (266nm) were kept constant. The dot size increased with pressure in the range between 0.005Pa to 1Pa, in Ar gas. At pressures as high as 100Pa, dot size decreased again with slightly different morphology. Increasing deposition time from 3, 5, to 10min brought about an increase in the average dot size from 5±2.1nm, 9±2.4nm, 10±3.0nm, respectively, under the constant Ar pressure, 100Pa. It is particularly to be noted that decreasing TSD from 100mm to 50mm brought about an increase in the dot size from 5±2.1nm to 9±3.3nm at Ar pressure, 100Pa, and deposition time, 3min. We discuss factors making self-organized Ag nanodots, and proposed key values to evaluate homogenize of dots assembly. |
8 | ″ | schema:genre | article |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N541bbd8e73ea4439b4e3c0bb2d8ce02f |
11 | ″ | ″ | sg:journal.1297379 |
12 | ″ | schema:keywords | ABSTRACT Self |
13 | ″ | ″ | Ag nanodots |
14 | ″ | ″ | Ag quantum dots |
15 | ″ | ″ | Ar gas |
16 | ″ | ″ | Ar pressure |
17 | ″ | ″ | Nd |
18 | ″ | ″ | PA |
19 | ″ | ″ | YAG laser |
20 | ″ | ″ | apparatus |
21 | ″ | ″ | assembly |
22 | ″ | ″ | average dot size |
23 | ″ | ″ | chamber |
24 | ″ | ″ | compact apparatus |
25 | ″ | ″ | constant Ar pressure |
26 | ″ | ″ | control |
27 | ″ | ″ | deposition chamber |
28 | ″ | ″ | deposition method |
29 | ″ | ″ | deposition time |
30 | ″ | ″ | different morphologies |
31 | ″ | ″ | distance |
32 | ″ | ″ | dot assemblies |
33 | ″ | ″ | dot size |
34 | ″ | ″ | dots |
35 | ″ | ″ | factors |
36 | ″ | ″ | frequency |
37 | ″ | ″ | gas |
38 | ″ | ″ | homogenize |
39 | ″ | ″ | increase |
40 | ″ | ″ | key values |
41 | ″ | ″ | laser deposition method |
42 | ″ | ″ | laser wavelength |
43 | ″ | ″ | method |
44 | ″ | ″ | morphology |
45 | ″ | ″ | morphology control |
46 | ″ | ″ | nanodots |
47 | ″ | ″ | pressure |
48 | ″ | ″ | pulse frequency |
49 | ″ | ″ | pulse width |
50 | ″ | ″ | pulsed laser |
51 | ″ | ″ | purpose |
52 | ″ | ″ | quantum dots |
53 | ″ | ″ | range |
54 | ″ | ″ | self |
55 | ″ | ″ | size |
56 | ″ | ″ | species |
57 | ″ | ″ | target-substrate distance |
58 | ″ | ″ | time |
59 | ″ | ″ | values |
60 | ″ | ″ | wavelength |
61 | ″ | ″ | width |
62 | ″ | schema:name | Morphology Control of Pulsed-Laser Deposited Ag Quantum Dots |
63 | ″ | schema:pagination | w3.6 |
64 | ″ | schema:productId | N5207f58162e3407d87c34de43145d2fb |
65 | ″ | ″ | Nc09c5ee096ba4e6f9947843cc357b7f6 |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067955347 |
67 | ″ | ″ | https://doi.org/10.1557/proc-749-w3.6 |
68 | ″ | schema:sdDatePublished | 2022-08-04T16:54 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | N9ee8ae2f0fbe412aa744fa44b74c16ac |
71 | ″ | schema:url | https://doi.org/10.1557/proc-749-w3.6 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | articles |
74 | ″ | rdf:type | schema:ScholarlyArticle |
75 | N5207f58162e3407d87c34de43145d2fb | schema:name | doi |
76 | ″ | schema:value | 10.1557/proc-749-w3.6 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N541bbd8e73ea4439b4e3c0bb2d8ce02f | schema:volumeNumber | 749 |
79 | ″ | rdf:type | schema:PublicationVolume |
80 | N91508b14490c41cbbebed8c77e92d928 | rdf:first | sg:person.015311744043.08 |
81 | ″ | rdf:rest | Ndcd3a0b6c6b14c8ebaa2c037bdb69919 |
82 | N9ee8ae2f0fbe412aa744fa44b74c16ac | schema:name | Springer Nature - SN SciGraph project |
83 | ″ | rdf:type | schema:Organization |
84 | Naf137a7ce630473d897c072bad22542c | rdf:first | sg:person.011363404413.06 |
85 | ″ | rdf:rest | rdf:nil |
86 | Nc09c5ee096ba4e6f9947843cc357b7f6 | schema:name | dimensions_id |
87 | ″ | schema:value | pub.1067955347 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | Nc4a7f6d9ca45457486b924ae50a22c07 | rdf:first | sg:person.015310333670.77 |
90 | ″ | rdf:rest | Naf137a7ce630473d897c072bad22542c |
91 | Ndcd3a0b6c6b14c8ebaa2c037bdb69919 | rdf:first | sg:person.015125537626.24 |
92 | ″ | rdf:rest | Nc4a7f6d9ca45457486b924ae50a22c07 |
93 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Chemical Sciences |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Physical Chemistry (incl. Structural) |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:journal.1297379 | schema:issn | 0272-9172 |
100 | ″ | ″ | 2059-8521 |
101 | ″ | schema:name | MRS Advances |
102 | ″ | schema:publisher | Springer Nature |
103 | ″ | rdf:type | schema:Periodical |
104 | sg:person.011363404413.06 | schema:affiliation | grid-institutes:grid.26091.3c |
105 | ″ | schema:familyName | Senna |
106 | ″ | schema:givenName | Mamoru |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363404413.06 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.015125537626.24 | schema:affiliation | grid-institutes:None |
110 | ″ | schema:familyName | Nagare |
111 | ″ | schema:givenName | Sanshiro |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125537626.24 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.015310333670.77 | schema:affiliation | grid-institutes:None |
115 | ″ | schema:familyName | Hamada |
116 | ″ | schema:givenName | Kenji |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310333670.77 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.015311744043.08 | schema:affiliation | grid-institutes:None |
120 | ″ | schema:familyName | Machi |
121 | ″ | schema:givenName | Kinuyo |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311744043.08 |
123 | ″ | rdf:type | schema:Person |
124 | sg:pub.10.1007/s003399900169 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052058955 |
125 | ″ | ″ | https://doi.org/10.1007/s003399900169 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | grid-institutes:None | schema:alternateName | Nara Machinery Co., Ltd. 2–5–7, Jonanjima, Ootaku, Tokyo 143–0002, Japan |
128 | ″ | schema:name | Nara Machinery Co., Ltd. 2–5–7, Jonanjima, Ootaku, Tokyo 143–0002, Japan |
129 | ″ | rdf:type | schema:Organization |
130 | grid-institutes:grid.26091.3c | schema:alternateName | Faculty of Science and Technology, Keio University, 3.14–1, Hiyoshi, Yokohama, Japan |
131 | ″ | schema:name | Faculty of Science and Technology, Keio University, 3.14–1, Hiyoshi, Yokohama, Japan |
132 | ″ | rdf:type | schema:Organization |