Multiplicative Noise in Microstructure Evolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002

AUTHORS

K. G. Wang, M. E. Glicksman, P. Crawford

ABSTRACT

Multiparticle diffusion equations were modeled to simulate the dynamics of phase coarsening. Local environmental information and particle interactions within the microstructure are included in our simulations. These studies reveal that the growth rates of particles with the same radii can differ, and that particles with the average radius can grow, shrink, or remain conditionally stable. These results are in contrast to mean-field predictions, where particle growth rates are strictly deterministic. Multiparticle simulations prove that fluctuations occur in the particle growth rates, even at extremely low microstructural densities. Multiplicative noise provides a good basis to describe microstructural fluctuations. More... »

PAGES

w7.7

References to SciGraph publications

  • 1973. The Effect of Size and Distribution of Second Phase Particles and Voids on Sintering in SINTERING AND RELATED PHENOMENA
  • 1994-09. Kinetics of particle coarsening processes in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1557/proc-731-w7.7

    DOI

    http://dx.doi.org/10.1557/proc-731-w7.7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083650794


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "K. G.", 
            "id": "sg:person.013030502433.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030502433.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glicksman", 
            "givenName": "M. E.", 
            "id": "sg:person.010720014261.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crawford", 
            "givenName": "P.", 
            "id": "sg:person.07736230667.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736230667.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4615-8999-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041903424", 
              "https://doi.org/10.1007/978-1-4615-8999-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01320690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022426801", 
              "https://doi.org/10.1007/bf01320690"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002", 
        "datePublishedReg": "2002-01-01", 
        "description": "Abstract  Multiparticle diffusion equations were modeled to simulate the dynamics of phase coarsening. Local environmental information and particle interactions within the microstructure are included in our simulations. These studies reveal that the growth rates of particles with the same radii can differ, and that particles with the average radius can grow, shrink, or remain conditionally stable. These results are in contrast to mean-field predictions, where particle growth rates are strictly deterministic. Multiparticle simulations prove that fluctuations occur in the particle growth rates, even at extremely low microstructural densities. Multiplicative noise provides a good basis to describe microstructural fluctuations. ", 
        "genre": "article", 
        "id": "sg:pub.10.1557/proc-731-w7.7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297379", 
            "issn": [
              "0272-9172", 
              "2059-8521"
            ], 
            "name": "MRS Advances", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "731"
          }
        ], 
        "keywords": [
          "growth rate", 
          "local environmental information", 
          "environmental information", 
          "evolution", 
          "interaction", 
          "contrast", 
          "dynamics", 
          "basis", 
          "fluctuations", 
          "rate", 
          "good basis", 
          "study", 
          "density", 
          "results", 
          "information", 
          "prediction", 
          "mean-field predictions", 
          "average radius", 
          "particles", 
          "multiparticle simulations", 
          "particle interactions", 
          "simulations", 
          "same radius", 
          "microstructural density", 
          "radius", 
          "diffusion equation", 
          "microstructural fluctuations", 
          "particle growth rate", 
          "noise", 
          "equations", 
          "phase coarsening", 
          "microstructure", 
          "microstructure evolution", 
          "multiplicative noise", 
          "coarsening"
        ], 
        "name": "Multiplicative Noise in Microstructure Evolution", 
        "pagination": "w7.7", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083650794"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1557/proc-731-w7.7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1557/proc-731-w7.7", 
          "https://app.dimensions.ai/details/publication/pub.1083650794"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_357.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1557/proc-731-w7.7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-731-w7.7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-731-w7.7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-731-w7.7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-731-w7.7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    112 TRIPLES      22 PREDICATES      62 URIs      52 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1557/proc-731-w7.7 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author Na6b2fea5b8d8423091b31f98a03922ea
    4 schema:citation sg:pub.10.1007/978-1-4615-8999-0_10
    5 sg:pub.10.1007/bf01320690
    6 schema:datePublished 2002
    7 schema:datePublishedReg 2002-01-01
    8 schema:description Abstract Multiparticle diffusion equations were modeled to simulate the dynamics of phase coarsening. Local environmental information and particle interactions within the microstructure are included in our simulations. These studies reveal that the growth rates of particles with the same radii can differ, and that particles with the average radius can grow, shrink, or remain conditionally stable. These results are in contrast to mean-field predictions, where particle growth rates are strictly deterministic. Multiparticle simulations prove that fluctuations occur in the particle growth rates, even at extremely low microstructural densities. Multiplicative noise provides a good basis to describe microstructural fluctuations.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N023da5d6cbdb4d458e648023c4699b36
    13 sg:journal.1297379
    14 schema:keywords average radius
    15 basis
    16 coarsening
    17 contrast
    18 density
    19 diffusion equation
    20 dynamics
    21 environmental information
    22 equations
    23 evolution
    24 fluctuations
    25 good basis
    26 growth rate
    27 information
    28 interaction
    29 local environmental information
    30 mean-field predictions
    31 microstructural density
    32 microstructural fluctuations
    33 microstructure
    34 microstructure evolution
    35 multiparticle simulations
    36 multiplicative noise
    37 noise
    38 particle growth rate
    39 particle interactions
    40 particles
    41 phase coarsening
    42 prediction
    43 radius
    44 rate
    45 results
    46 same radius
    47 simulations
    48 study
    49 schema:name Multiplicative Noise in Microstructure Evolution
    50 schema:pagination w7.7
    51 schema:productId N8f9b6f2041074a8096634a26ecc433c7
    52 Nd2d00798dc0f4b4c8a57e12732aac1bd
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083650794
    54 https://doi.org/10.1557/proc-731-w7.7
    55 schema:sdDatePublished 2022-06-01T22:04
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N10b02b4d471542db8ef76c47150f7fa7
    58 schema:url https://doi.org/10.1557/proc-731-w7.7
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N023da5d6cbdb4d458e648023c4699b36 schema:volumeNumber 731
    63 rdf:type schema:PublicationVolume
    64 N10b02b4d471542db8ef76c47150f7fa7 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N79eba9a9bd104f19991e2915c660a02f rdf:first sg:person.07736230667.19
    67 rdf:rest rdf:nil
    68 N8f9b6f2041074a8096634a26ecc433c7 schema:name doi
    69 schema:value 10.1557/proc-731-w7.7
    70 rdf:type schema:PropertyValue
    71 Na6b2fea5b8d8423091b31f98a03922ea rdf:first sg:person.013030502433.94
    72 rdf:rest Necaaa1acee3f443dba5afbae4ac73ba1
    73 Nd2d00798dc0f4b4c8a57e12732aac1bd schema:name dimensions_id
    74 schema:value pub.1083650794
    75 rdf:type schema:PropertyValue
    76 Necaaa1acee3f443dba5afbae4ac73ba1 rdf:first sg:person.010720014261.43
    77 rdf:rest N79eba9a9bd104f19991e2915c660a02f
    78 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Earth Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Geology
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1297379 schema:issn 0272-9172
    85 2059-8521
    86 schema:name MRS Advances
    87 schema:publisher Springer Nature
    88 rdf:type schema:Periodical
    89 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.33647.35
    90 schema:familyName Glicksman
    91 schema:givenName M. E.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
    93 rdf:type schema:Person
    94 sg:person.013030502433.94 schema:affiliation grid-institutes:grid.33647.35
    95 schema:familyName Wang
    96 schema:givenName K. G.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030502433.94
    98 rdf:type schema:Person
    99 sg:person.07736230667.19 schema:affiliation grid-institutes:grid.33647.35
    100 schema:familyName Crawford
    101 schema:givenName P.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736230667.19
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-1-4615-8999-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041903424
    105 https://doi.org/10.1007/978-1-4615-8999-0_10
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01320690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022426801
    108 https://doi.org/10.1007/bf01320690
    109 rdf:type schema:CreativeWork
    110 grid-institutes:grid.33647.35 schema:alternateName Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180
    111 schema:name Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180
    112 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...