Physical Origin of a Size Effect in Nanoindentation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000

AUTHORS

A.J. Bushby, J.R. Downes, N.B. Jayaweera, P. Kidd, A. Kelly, D.J. Dunstan

ABSTRACT

ABSTRACT We have reported results of nanoindentation using spherical indenters to observe the full indentation stress-strain curve. We observe the onset of plasticity in semiconductor strained-layer superlattices. These structures have alternating layers with strains of opposite sign. The yield pressure is reduced by the presence of the coherency strain. By varying the thicknesses and strains, we have been able to show that both sets of layers, compressive and tensile, reduce the yield pressure. This requires that a yield criterion must be satisfied over a volume, large enough to include layers of both sign. In these studies, we observe a large and reproducible size effect in the yield pressure. That is, with smaller radius indenters the mean pressure acting over the contact area at the deviation from purely elastic behaviour increases, by up to a factor of two for a 2μm radius indenter tip. Here we show how the requirement for meeting a yield criterion over a finite volume naturally leads to the size effect. Essentially, with smaller radius indenters, the peak stresses must be greater in order to satisfy the yield criterion over a finite volume. By integrating the strain energy over a suitable volume we show that there is a critical volume of ≍ 0.5μm radius over which yield is initiated for all indenter radii in the range 1-35μm. This is an important result for the understanding of nanoindentation and other systems in which stresses are highly inhomogeneous on a small scale. More... »

PAGES

q8.4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/proc-649-q8.4

DOI

http://dx.doi.org/10.1557/proc-649-q8.4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067950124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials, Queen Mary, University of London, London E1 4NS, UK", 
          "id": "http://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "Department of Materials, Queen Mary, University of London, London E1 4NS, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bushby", 
        "givenName": "A.J.", 
        "id": "sg:person.01326637643.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326637643.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Queen Mary, University of London, London E1 4NS, UK", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Department of Physics, Queen Mary, University of London, London E1 4NS, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Downes", 
        "givenName": "J.R.", 
        "id": "sg:person.012246274432.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246274432.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Queen Mary, University of London, London E1 4NS, UK", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Department of Physics, Queen Mary, University of London, London E1 4NS, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayaweera", 
        "givenName": "N.B.", 
        "id": "sg:person.010163174105.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163174105.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Queen Mary, University of London, London E1 4NS, UK", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Department of Physics, Queen Mary, University of London, London E1 4NS, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidd", 
        "givenName": "P.", 
        "id": "sg:person.07436761475.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436761475.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge CB2 3QZ, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge CB2 3QZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelly", 
        "givenName": "A.", 
        "id": "sg:person.011075003105.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075003105.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Queen Mary, University of London, London E1 4NS, UK", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Department of Physics, Queen Mary, University of London, London E1 4NS, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunstan", 
        "givenName": "D.J.", 
        "id": "sg:person.016646041113.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646041113.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.1992.0450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009825546", 
          "https://doi.org/10.1557/jmr.1992.0450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-522-145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067942487", 
          "https://doi.org/10.1557/proc-522-145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1999.0303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034408660", 
          "https://doi.org/10.1557/jmr.1999.0303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1993.0297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053689325", 
          "https://doi.org/10.1557/jmr.1993.0297"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "ABSTRACT We have reported results of nanoindentation using spherical indenters to observe the full indentation stress-strain curve. We observe the onset of plasticity in semiconductor strained-layer superlattices. These structures have alternating layers with strains of opposite sign. The yield pressure is reduced by the presence of the coherency strain. By varying the thicknesses and strains, we have been able to show that both sets of layers, compressive and tensile, reduce the yield pressure. This requires that a yield criterion must be satisfied over a volume, large enough to include layers of both sign. In these studies, we observe a large and reproducible size effect in the yield pressure. That is, with smaller radius indenters the mean pressure acting over the contact area at the deviation from purely elastic behaviour increases, by up to a factor of two for a 2\u03bcm radius indenter tip. Here we show how the requirement for meeting a yield criterion over a finite volume naturally leads to the size effect. Essentially, with smaller radius indenters, the peak stresses must be greater in order to satisfy the yield criterion over a finite volume. By integrating the strain energy over a suitable volume we show that there is a critical volume of \u224d 0.5\u03bcm radius over which yield is initiated for all indenter radii in the range 1-35\u03bcm. This is an important result for the understanding of nanoindentation and other systems in which stresses are highly inhomogeneous on a small scale.", 
    "genre": "article", 
    "id": "sg:pub.10.1557/proc-649-q8.4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297379", 
        "issn": [
          "0272-9172", 
          "2059-8521"
        ], 
        "name": "MRS Advances", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "649"
      }
    ], 
    "keywords": [
      "yield criterion", 
      "yield pressure", 
      "indentation stress\u2013strain curves", 
      "size effect", 
      "results of nanoindentation", 
      "stress-strain curves", 
      "onset of plasticity", 
      "finite volume", 
      "spherical indenter", 
      "indenter tip", 
      "strained-layer superlattices", 
      "peak stress", 
      "contact area", 
      "strain energy", 
      "nanoindentation", 
      "indenter", 
      "coherency strain", 
      "layer", 
      "set of layers", 
      "small scale", 
      "small radius", 
      "physical origin", 
      "mean pressure", 
      "critical volume", 
      "pressure", 
      "radius", 
      "thickness", 
      "stress", 
      "suitable volume", 
      "superlattices", 
      "opposite sign", 
      "important results", 
      "volume", 
      "energy", 
      "tip", 
      "strains", 
      "results", 
      "effect", 
      "behavior increases", 
      "requirements", 
      "structure", 
      "range", 
      "system", 
      "curves", 
      "deviation", 
      "order", 
      "criteria", 
      "increase", 
      "area", 
      "scale", 
      "plasticity", 
      "yield", 
      "Abstract", 
      "set", 
      "presence", 
      "study", 
      "factors", 
      "understanding", 
      "onset", 
      "origin", 
      "signs"
    ], 
    "name": "Physical Origin of a Size Effect in Nanoindentation", 
    "pagination": "q8.4", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067950124"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/proc-649-q8.4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/proc-649-q8.4", 
      "https://app.dimensions.ai/details/publication/pub.1067950124"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_335.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/proc-649-q8.4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-649-q8.4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-649-q8.4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-649-q8.4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-649-q8.4'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      22 PREDICATES      90 URIs      78 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/proc-649-q8.4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb02e323cec35466881df78aeb640fa88
4 schema:citation sg:pub.10.1557/jmr.1992.0450
5 sg:pub.10.1557/jmr.1993.0297
6 sg:pub.10.1557/jmr.1999.0303
7 sg:pub.10.1557/proc-522-145
8 schema:datePublished 2000
9 schema:datePublishedReg 2000-01-01
10 schema:description ABSTRACT We have reported results of nanoindentation using spherical indenters to observe the full indentation stress-strain curve. We observe the onset of plasticity in semiconductor strained-layer superlattices. These structures have alternating layers with strains of opposite sign. The yield pressure is reduced by the presence of the coherency strain. By varying the thicknesses and strains, we have been able to show that both sets of layers, compressive and tensile, reduce the yield pressure. This requires that a yield criterion must be satisfied over a volume, large enough to include layers of both sign. In these studies, we observe a large and reproducible size effect in the yield pressure. That is, with smaller radius indenters the mean pressure acting over the contact area at the deviation from purely elastic behaviour increases, by up to a factor of two for a 2μm radius indenter tip. Here we show how the requirement for meeting a yield criterion over a finite volume naturally leads to the size effect. Essentially, with smaller radius indenters, the peak stresses must be greater in order to satisfy the yield criterion over a finite volume. By integrating the strain energy over a suitable volume we show that there is a critical volume of ≍ 0.5μm radius over which yield is initiated for all indenter radii in the range 1-35μm. This is an important result for the understanding of nanoindentation and other systems in which stresses are highly inhomogeneous on a small scale.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N033e7f38522641d99622d700ea121a2a
15 sg:journal.1297379
16 schema:keywords Abstract
17 area
18 behavior increases
19 coherency strain
20 contact area
21 criteria
22 critical volume
23 curves
24 deviation
25 effect
26 energy
27 factors
28 finite volume
29 important results
30 increase
31 indentation stress–strain curves
32 indenter
33 indenter tip
34 layer
35 mean pressure
36 nanoindentation
37 onset
38 onset of plasticity
39 opposite sign
40 order
41 origin
42 peak stress
43 physical origin
44 plasticity
45 presence
46 pressure
47 radius
48 range
49 requirements
50 results
51 results of nanoindentation
52 scale
53 set
54 set of layers
55 signs
56 size effect
57 small radius
58 small scale
59 spherical indenter
60 strain energy
61 strained-layer superlattices
62 strains
63 stress
64 stress-strain curves
65 structure
66 study
67 suitable volume
68 superlattices
69 system
70 thickness
71 tip
72 understanding
73 volume
74 yield
75 yield criterion
76 yield pressure
77 schema:name Physical Origin of a Size Effect in Nanoindentation
78 schema:pagination q8.4
79 schema:productId N4071bf2f685f4884bfbe350484b3779c
80 N4724c90364ed4d4a8d69dbfe5c420fea
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067950124
82 https://doi.org/10.1557/proc-649-q8.4
83 schema:sdDatePublished 2022-06-01T22:03
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N9b24a7a2cc974a118b76e32455085a8c
86 schema:url https://doi.org/10.1557/proc-649-q8.4
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N033e7f38522641d99622d700ea121a2a schema:volumeNumber 649
91 rdf:type schema:PublicationVolume
92 N14bd1778b60b42f8aa90bf1e8f2a3540 rdf:first sg:person.016646041113.50
93 rdf:rest rdf:nil
94 N1f619bdb8e234920aca389ff14127585 rdf:first sg:person.010163174105.35
95 rdf:rest Ndcc9a42775d2434bba5b0da379af7419
96 N4071bf2f685f4884bfbe350484b3779c schema:name doi
97 schema:value 10.1557/proc-649-q8.4
98 rdf:type schema:PropertyValue
99 N4724c90364ed4d4a8d69dbfe5c420fea schema:name dimensions_id
100 schema:value pub.1067950124
101 rdf:type schema:PropertyValue
102 N4e87bb4f6a50465b90125dea34c653be rdf:first sg:person.012246274432.49
103 rdf:rest N1f619bdb8e234920aca389ff14127585
104 N64aa86612c1f40c5973ab83b44f0b881 rdf:first sg:person.011075003105.60
105 rdf:rest N14bd1778b60b42f8aa90bf1e8f2a3540
106 N9b24a7a2cc974a118b76e32455085a8c schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nb02e323cec35466881df78aeb640fa88 rdf:first sg:person.01326637643.61
109 rdf:rest N4e87bb4f6a50465b90125dea34c653be
110 Ndcc9a42775d2434bba5b0da379af7419 rdf:first sg:person.07436761475.92
111 rdf:rest N64aa86612c1f40c5973ab83b44f0b881
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
116 schema:name Materials Engineering
117 rdf:type schema:DefinedTerm
118 sg:journal.1297379 schema:issn 0272-9172
119 2059-8521
120 schema:name MRS Advances
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.010163174105.35 schema:affiliation grid-institutes:grid.4868.2
124 schema:familyName Jayaweera
125 schema:givenName N.B.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163174105.35
127 rdf:type schema:Person
128 sg:person.011075003105.60 schema:affiliation grid-institutes:grid.5335.0
129 schema:familyName Kelly
130 schema:givenName A.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075003105.60
132 rdf:type schema:Person
133 sg:person.012246274432.49 schema:affiliation grid-institutes:grid.4868.2
134 schema:familyName Downes
135 schema:givenName J.R.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246274432.49
137 rdf:type schema:Person
138 sg:person.01326637643.61 schema:affiliation grid-institutes:grid.4464.2
139 schema:familyName Bushby
140 schema:givenName A.J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326637643.61
142 rdf:type schema:Person
143 sg:person.016646041113.50 schema:affiliation grid-institutes:grid.4868.2
144 schema:familyName Dunstan
145 schema:givenName D.J.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646041113.50
147 rdf:type schema:Person
148 sg:person.07436761475.92 schema:affiliation grid-institutes:grid.4868.2
149 schema:familyName Kidd
150 schema:givenName P.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436761475.92
152 rdf:type schema:Person
153 sg:pub.10.1557/jmr.1992.0450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009825546
154 https://doi.org/10.1557/jmr.1992.0450
155 rdf:type schema:CreativeWork
156 sg:pub.10.1557/jmr.1993.0297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053689325
157 https://doi.org/10.1557/jmr.1993.0297
158 rdf:type schema:CreativeWork
159 sg:pub.10.1557/jmr.1999.0303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034408660
160 https://doi.org/10.1557/jmr.1999.0303
161 rdf:type schema:CreativeWork
162 sg:pub.10.1557/proc-522-145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067942487
163 https://doi.org/10.1557/proc-522-145
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.4464.2 schema:alternateName Department of Materials, Queen Mary, University of London, London E1 4NS, UK
166 schema:name Department of Materials, Queen Mary, University of London, London E1 4NS, UK
167 rdf:type schema:Organization
168 grid-institutes:grid.4868.2 schema:alternateName Department of Physics, Queen Mary, University of London, London E1 4NS, UK
169 schema:name Department of Physics, Queen Mary, University of London, London E1 4NS, UK
170 rdf:type schema:Organization
171 grid-institutes:grid.5335.0 schema:alternateName Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge CB2 3QZ, UK
172 schema:name Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge CB2 3QZ, UK
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...