Some Aspects of Plastic Flow in Silicon Nitride View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999

AUTHORS

T. Rouxel, J. Rabier, S. Testu, X. Milhet

ABSTRACT

The different scales of plastic flow in silicon nitride were investigated either by indentation experiments and compression under hydrostatic pressure in the 20-850°C temperature range, and by stress relaxation and creep above 1350°C. [0001], 1/3<11-20> and 1/3<11-23> dislocations were evidenced by Transmission Electron Microscopy (TEM) in the low temperature range. Cross-slip events in {10-10} prismatic planes were observed at temperature as low as 20°C by Atomic Force Microscopy (AFM) on micro-hardness indents. By increasing the temperature, the deviation plane becomes {11-20} prismatic planes. The easiest slip system is by far the [0001]{10-10} system. Above 1350°C, the creep strain could be fitted by the sum of a transient component, ε t =ε ∞ [1-exp-(t/τ c ) bc ], where τ c reflects the duration of the transient creep stage, and b c is between 0 and 1, and a stationary component, ε s =ε s t =Aσ n t, where σ is the stress and n is the stress exponent. The increase of ε ∞ with temperature is interpreted on the basis of the formation of liquid intergranulary phases above 1400°C by progressive melting of some of the grains. A creep exponent of 1.8 was determined. A single value could hardly be given to the activation energy since an S-shape curve was observed in the In ε s versus l/T plot, as for most glasses over large temperature ranges. The stress relaxation kinetics was found to follow the Kohlrausch-Williams-Watt expression: σ/σ o =exp [-(t/τ r ) br ], where b r ranges between 0 (solid state) and I (liquid state) and τ r is a characteristic relaxation time constant. As in the case of glasses, τ r decreases rapidly whereas b r increases from about 0.2 to 0.7 as the temperature increases from 1400 to 1650°C. But again, it is very difficult to get a single value for the activation energy from the In τ r versus 1/T plot. More... »

PAGES

117

References to SciGraph publications

  • 1990-03. A superplastic covalent crystal composite in NATURE
  • 1997-07. Dislocations studies in β-silicon nitride in JOURNAL OF MATERIALS SCIENCE
  • 1997-02. Superplastic forming of an α-phase rich silicon nitride in JOURNAL OF MATERIALS RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1557/proc-601-117

    DOI

    http://dx.doi.org/10.1557/proc-601-117

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1067947740


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire \u201cVerres et C\u00e9ramiques\u201d, UMR-CNRS 6512, Universit\u00e9 de Rennes 1, Campus Beaulieu, 35042 Rennes cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.410368.8", 
              "name": [
                "Laboratoire \u201cVerres et C\u00e9ramiques\u201d, UMR-CNRS 6512, Universit\u00e9 de Rennes 1, Campus Beaulieu, 35042 Rennes cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rouxel", 
            "givenName": "T.", 
            "id": "sg:person.016422007655.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016422007655.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de m\u00e9tallurgie physique, URA-CNRS 131, Universit\u00e9 de Poitiers, Bd. 3 T\u00e9l\u00e9port 2 BP 179, 86960 Futuroscope cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.11166.31", 
              "name": [
                "Laboratoire de m\u00e9tallurgie physique, URA-CNRS 131, Universit\u00e9 de Poitiers, Bd. 3 T\u00e9l\u00e9port 2 BP 179, 86960 Futuroscope cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rabier", 
            "givenName": "J.", 
            "id": "sg:person.014100575451.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100575451.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ENSCI, SPCTS, UMR-CNRS 6638,47 Av. A. Thomas, 87065 Limoges cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "ENSCI, SPCTS, UMR-CNRS 6638,47 Av. A. Thomas, 87065 Limoges cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Testu", 
            "givenName": "S.", 
            "id": "sg:person.014574337751.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014574337751.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de m\u00e9tallurgie physique, URA-CNRS 131, Universit\u00e9 de Poitiers, Bd. 3 T\u00e9l\u00e9port 2 BP 179, 86960 Futuroscope cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.11166.31", 
              "name": [
                "Laboratoire de m\u00e9tallurgie physique, URA-CNRS 131, Universit\u00e9 de Poitiers, Bd. 3 T\u00e9l\u00e9port 2 BP 179, 86960 Futuroscope cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Milhet", 
            "givenName": "X.", 
            "id": "sg:person.016271117051.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271117051.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1018659203552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035839415", 
              "https://doi.org/10.1023/a:1018659203552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1997.0070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027455681", 
              "https://doi.org/10.1557/jmr.1997.0070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/344421a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015668946", 
              "https://doi.org/10.1038/344421a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999", 
        "datePublishedReg": "1999-01-01", 
        "description": "Abstract  The different scales of plastic flow in silicon nitride were investigated either by indentation experiments and compression under hydrostatic pressure in the 20-850\u00b0C temperature range, and by stress relaxation and creep above 1350\u00b0C. [0001], 1/3<11-20> and 1/3<11-23> dislocations were evidenced by Transmission Electron Microscopy (TEM) in the low temperature range. Cross-slip events in {10-10} prismatic planes were observed at temperature as low as 20\u00b0C by Atomic Force Microscopy (AFM) on micro-hardness indents. By increasing the temperature, the deviation plane becomes {11-20} prismatic planes. The easiest slip system is by far the [0001]{10-10} system. Above 1350\u00b0C, the creep strain could be fitted by the sum of a transient component, \u03b5 t =\u03b5 \u221e [1-exp-(t/\u03c4 c ) bc ], where \u03c4 c reflects the duration of the transient creep stage, and b c is between 0 and 1, and a stationary component, \u03b5 s =\u03b5 s t =A\u03c3 n t, where \u03c3 is the stress and n is the stress exponent. The increase of \u03b5 \u221e with temperature is interpreted on the basis of the formation of liquid intergranulary phases above 1400\u00b0C by progressive melting of some of the grains. A creep exponent of 1.8 was determined. A single value could hardly be given to the activation energy since an S-shape curve was observed in the In \u03b5 s versus l/T plot, as for most glasses over large temperature ranges. The stress relaxation kinetics was found to follow the Kohlrausch-Williams-Watt expression: \u03c3/\u03c3 o =exp [-(t/\u03c4 r ) br ], where b r ranges between 0 (solid state) and I (liquid state) and \u03c4 r is a characteristic relaxation time constant. As in the case of glasses, \u03c4 r decreases rapidly whereas b r increases from about 0.2 to 0.7 as the temperature increases from 1400 to 1650\u00b0C. But again, it is very difficult to get a single value for the activation energy from the In \u03c4 r versus 1/T plot. ", 
        "genre": "article", 
        "id": "sg:pub.10.1557/proc-601-117", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297379", 
            "issn": [
              "0272-9172", 
              "2059-8521"
            ], 
            "name": "MRS Advances", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "601"
          }
        ], 
        "keywords": [
          "atomic force microscopy", 
          "transmission electron microscopy", 
          "silicon nitride", 
          "characteristic relaxation time", 
          "force microscopy", 
          "case of glass", 
          "most glasses", 
          "temperature range", 
          "large temperature range", 
          "relaxation kinetics", 
          "relaxation time", 
          "activation energy", 
          "plastic flow", 
          "electron microscopy", 
          "nitride", 
          "Kohlrausch-Williams", 
          "low temperature range", 
          "glass", 
          "transient creep stage", 
          "energy", 
          "cross-slip events", 
          "prismatic planes", 
          "plane", 
          "stress relaxation kinetics", 
          "microscopy", 
          "hydrostatic pressure", 
          "temperature", 
          "creep strain", 
          "indentation experiments", 
          "stress exponent", 
          "creep stage", 
          "easiest slip system", 
          "creep exponent", 
          "stress relaxation", 
          "slip systems", 
          "range", 
          "relaxation", 
          "single value", 
          "stationary components", 
          "exponent", 
          "flow", 
          "transient component", 
          "indents", 
          "different scales", 
          "phase", 
          "experiments", 
          "shape curve", 
          "system", 
          "components", 
          "formation", 
          "values", 
          "grains", 
          "dislocations", 
          "melting", 
          "curves", 
          "compression", 
          "scale", 
          "Watts expression", 
          "pressure", 
          "progressive melting", 
          "stress", 
          "kinetics", 
          "increase", 
          "plots", 
          "sum", 
          "time", 
          "basis", 
          "strains", 
          "cases", 
          "duration", 
          "events", 
          "stage", 
          "aspects", 
          "expression"
        ], 
        "name": "Some Aspects of Plastic Flow in Silicon Nitride", 
        "pagination": "117", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1067947740"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1557/proc-601-117"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1557/proc-601-117", 
          "https://app.dimensions.ai/details/publication/pub.1067947740"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_321.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1557/proc-601-117"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-601-117'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-601-117'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-601-117'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-601-117'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      22 PREDICATES      102 URIs      91 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1557/proc-601-117 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nd70794630ea246d0ae58b1c9ba0dff1a
    4 schema:citation sg:pub.10.1023/a:1018659203552
    5 sg:pub.10.1038/344421a0
    6 sg:pub.10.1557/jmr.1997.0070
    7 schema:datePublished 1999
    8 schema:datePublishedReg 1999-01-01
    9 schema:description Abstract The different scales of plastic flow in silicon nitride were investigated either by indentation experiments and compression under hydrostatic pressure in the 20-850°C temperature range, and by stress relaxation and creep above 1350°C. [0001], 1/3<11-20> and 1/3<11-23> dislocations were evidenced by Transmission Electron Microscopy (TEM) in the low temperature range. Cross-slip events in {10-10} prismatic planes were observed at temperature as low as 20°C by Atomic Force Microscopy (AFM) on micro-hardness indents. By increasing the temperature, the deviation plane becomes {11-20} prismatic planes. The easiest slip system is by far the [0001]{10-10} system. Above 1350°C, the creep strain could be fitted by the sum of a transient component, ε t =ε ∞ [1-exp-(t/τ c ) bc ], where τ c reflects the duration of the transient creep stage, and b c is between 0 and 1, and a stationary component, ε s =ε s t =Aσ n t, where σ is the stress and n is the stress exponent. The increase of ε ∞ with temperature is interpreted on the basis of the formation of liquid intergranulary phases above 1400°C by progressive melting of some of the grains. A creep exponent of 1.8 was determined. A single value could hardly be given to the activation energy since an S-shape curve was observed in the In ε s versus l/T plot, as for most glasses over large temperature ranges. The stress relaxation kinetics was found to follow the Kohlrausch-Williams-Watt expression: σ/σ o =exp [-(t/τ r ) br ], where b r ranges between 0 (solid state) and I (liquid state) and τ r is a characteristic relaxation time constant. As in the case of glasses, τ r decreases rapidly whereas b r increases from about 0.2 to 0.7 as the temperature increases from 1400 to 1650°C. But again, it is very difficult to get a single value for the activation energy from the In τ r versus 1/T plot.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N94c8e60507f0497cb948f0de3b0bfa29
    14 sg:journal.1297379
    15 schema:keywords Kohlrausch-Williams
    16 Watts expression
    17 activation energy
    18 aspects
    19 atomic force microscopy
    20 basis
    21 case of glass
    22 cases
    23 characteristic relaxation time
    24 components
    25 compression
    26 creep exponent
    27 creep stage
    28 creep strain
    29 cross-slip events
    30 curves
    31 different scales
    32 dislocations
    33 duration
    34 easiest slip system
    35 electron microscopy
    36 energy
    37 events
    38 experiments
    39 exponent
    40 expression
    41 flow
    42 force microscopy
    43 formation
    44 glass
    45 grains
    46 hydrostatic pressure
    47 increase
    48 indentation experiments
    49 indents
    50 kinetics
    51 large temperature range
    52 low temperature range
    53 melting
    54 microscopy
    55 most glasses
    56 nitride
    57 phase
    58 plane
    59 plastic flow
    60 plots
    61 pressure
    62 prismatic planes
    63 progressive melting
    64 range
    65 relaxation
    66 relaxation kinetics
    67 relaxation time
    68 scale
    69 shape curve
    70 silicon nitride
    71 single value
    72 slip systems
    73 stage
    74 stationary components
    75 strains
    76 stress
    77 stress exponent
    78 stress relaxation
    79 stress relaxation kinetics
    80 sum
    81 system
    82 temperature
    83 temperature range
    84 time
    85 transient component
    86 transient creep stage
    87 transmission electron microscopy
    88 values
    89 schema:name Some Aspects of Plastic Flow in Silicon Nitride
    90 schema:pagination 117
    91 schema:productId N6492ce66c21a4d999b3c2e6f8960f0da
    92 Nfc42ff1761754d6a9cb7a222f21051b7
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067947740
    94 https://doi.org/10.1557/proc-601-117
    95 schema:sdDatePublished 2022-05-20T07:21
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nba000b2092174ef585f3d4274dd31acc
    98 schema:url https://doi.org/10.1557/proc-601-117
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N3a3005840ceb403a970ed3fa33b45acc rdf:first sg:person.014574337751.99
    103 rdf:rest N85dd67274bc14f23aa6648db6fc4c7bb
    104 N6492ce66c21a4d999b3c2e6f8960f0da schema:name dimensions_id
    105 schema:value pub.1067947740
    106 rdf:type schema:PropertyValue
    107 N85dd67274bc14f23aa6648db6fc4c7bb rdf:first sg:person.016271117051.87
    108 rdf:rest rdf:nil
    109 N94c8e60507f0497cb948f0de3b0bfa29 schema:volumeNumber 601
    110 rdf:type schema:PublicationVolume
    111 Nb0fa51d28e354f2ca7d2b9abbed6bce7 rdf:first sg:person.014100575451.86
    112 rdf:rest N3a3005840ceb403a970ed3fa33b45acc
    113 Nba000b2092174ef585f3d4274dd31acc schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 Nd70794630ea246d0ae58b1c9ba0dff1a rdf:first sg:person.016422007655.87
    116 rdf:rest Nb0fa51d28e354f2ca7d2b9abbed6bce7
    117 Nfc42ff1761754d6a9cb7a222f21051b7 schema:name doi
    118 schema:value 10.1557/proc-601-117
    119 rdf:type schema:PropertyValue
    120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Engineering
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Materials Engineering
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1297379 schema:issn 0272-9172
    127 2059-8521
    128 schema:name MRS Advances
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.014100575451.86 schema:affiliation grid-institutes:grid.11166.31
    132 schema:familyName Rabier
    133 schema:givenName J.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100575451.86
    135 rdf:type schema:Person
    136 sg:person.014574337751.99 schema:affiliation grid-institutes:None
    137 schema:familyName Testu
    138 schema:givenName S.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014574337751.99
    140 rdf:type schema:Person
    141 sg:person.016271117051.87 schema:affiliation grid-institutes:grid.11166.31
    142 schema:familyName Milhet
    143 schema:givenName X.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271117051.87
    145 rdf:type schema:Person
    146 sg:person.016422007655.87 schema:affiliation grid-institutes:grid.410368.8
    147 schema:familyName Rouxel
    148 schema:givenName T.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016422007655.87
    150 rdf:type schema:Person
    151 sg:pub.10.1023/a:1018659203552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035839415
    152 https://doi.org/10.1023/a:1018659203552
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/344421a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015668946
    155 https://doi.org/10.1038/344421a0
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1557/jmr.1997.0070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027455681
    158 https://doi.org/10.1557/jmr.1997.0070
    159 rdf:type schema:CreativeWork
    160 grid-institutes:None schema:alternateName ENSCI, SPCTS, UMR-CNRS 6638,47 Av. A. Thomas, 87065 Limoges cedex, France
    161 schema:name ENSCI, SPCTS, UMR-CNRS 6638,47 Av. A. Thomas, 87065 Limoges cedex, France
    162 rdf:type schema:Organization
    163 grid-institutes:grid.11166.31 schema:alternateName Laboratoire de métallurgie physique, URA-CNRS 131, Université de Poitiers, Bd. 3 Téléport 2 BP 179, 86960 Futuroscope cedex, France
    164 schema:name Laboratoire de métallurgie physique, URA-CNRS 131, Université de Poitiers, Bd. 3 Téléport 2 BP 179, 86960 Futuroscope cedex, France
    165 rdf:type schema:Organization
    166 grid-institutes:grid.410368.8 schema:alternateName Laboratoire “Verres et Céramiques”, UMR-CNRS 6512, Université de Rennes 1, Campus Beaulieu, 35042 Rennes cedex, France
    167 schema:name Laboratoire “Verres et Céramiques”, UMR-CNRS 6512, Université de Rennes 1, Campus Beaulieu, 35042 Rennes cedex, France
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...