Structural And Electronic Properties Of Potassium Hydrogen Intercalated Graphite View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985

AUTHORS

N. C. Yeh, T. Enoki, L. Salamanca–Riba, G. Dresselhaus

ABSTRACT

Because of the difference in charge transfer and superlattice formation of the various intercalant species, graphite intercalation compounds (GICs) exhibit a variety of interesting electronic properties and phonon properties. These compounds form monolayered metallic superlattices along the c—axis, in contrast to the multilayered metallic superlattices grown from MBE and sputtering synthesis methods. GICs are generally divided into donor—type and acceptor—type compounds, depending on whether the electrons are transferred to the graphite or from the graphite. The modification of the electronic energy bands of GICs by charge transfer is analogous to that of the nipi superlattices. Because of the strong electron affinity of hydrogen relative to that of graphite, the addition of hydrogen into donor—type GICs (e.g. K—GICs, KHg—GICs) modifies the charge transfer from the intercalates to the graphite л-bands. Therefore, studies of the donor—type KH x —GICs provide us with new understanding of the variation of the electronic properties of alkali—metal GICs as the as charge transfer is modified. More... »

PAGES

467

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/proc-56-467

DOI

http://dx.doi.org/10.1557/proc-56-467

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067945064


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology, Cambridge, MA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Massachusetts Institute of Technology, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeh", 
        "givenName": "N. C.", 
        "id": "sg:person.013712724175.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013712724175.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Institute, Okazaki, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Molecular Institute, Okazaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enoki", 
        "givenName": "T.", 
        "id": "sg:person.011542125231.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542125231.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology, Cambridge, MA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Massachusetts Institute of Technology, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salamanca\u2013Riba", 
        "givenName": "L.", 
        "id": "sg:person.0762130616.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762130616.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FBNML", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "FBNML"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dresselhaus", 
        "givenName": "G.", 
        "id": "sg:person.01106534704.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106534704.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "Abstract  Because of the difference in charge transfer and superlattice formation of the various intercalant species, graphite intercalation compounds (GICs) exhibit a variety of interesting electronic properties and phonon properties. These compounds form monolayered metallic superlattices along the c\u2014axis, in contrast to the multilayered metallic superlattices grown from MBE and sputtering synthesis methods. GICs are generally divided into donor\u2014type and acceptor\u2014type compounds, depending on whether the electrons are transferred to the graphite or from the graphite. The modification of the electronic energy bands of GICs by charge transfer is analogous to that of the nipi superlattices. Because of the strong electron affinity of hydrogen relative to that of graphite, the addition of hydrogen into donor\u2014type GICs (e.g. K\u2014GICs, KHg\u2014GICs) modifies the charge transfer from the intercalates to the graphite \u043b-bands. Therefore, studies of the donor\u2014type KH x \u2014GICs provide us with new understanding of the variation of the electronic properties of alkali\u2014metal GICs as the as charge transfer is modified. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/proc-56-467", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297379", 
        "issn": [
          "0272-9172", 
          "2059-8521"
        ], 
        "name": "MRS Advances", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "charge transfer", 
      "electronic properties", 
      "acceptor-type compounds", 
      "strong electron affinity", 
      "interesting electronic properties", 
      "alkali metal GICs", 
      "addition of hydrogen", 
      "electron affinity", 
      "intercalant species", 
      "synthesis method", 
      "potassium hydrogen", 
      "graphite intercalation", 
      "compound forms", 
      "hydrogen", 
      "superlattice formation", 
      "graphite", 
      "electronic energy bands", 
      "properties", 
      "transfer", 
      "intercalation", 
      "intercalates", 
      "energy bands", 
      "phonon properties", 
      "compounds", 
      "Structural", 
      "band", 
      "electrons", 
      "GIC", 
      "affinity", 
      "formation", 
      "modification", 
      "metallic superlattices", 
      "superlattices", 
      "species", 
      "addition", 
      "method", 
      "variety", 
      "form", 
      "new understanding", 
      "contrast", 
      "study", 
      "understanding", 
      "axis", 
      "variation", 
      "MBE", 
      "differences", 
      "nipi superlattices"
    ], 
    "name": "STRUCTURAL AND ELECTRONIC PROPERTIES OF POTASSIUM HYDROGEN INTERCALATED GRAPHITE", 
    "pagination": "467", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067945064"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/proc-56-467"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/proc-56-467", 
      "https://app.dimensions.ai/details/publication/pub.1067945064"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_204.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/proc-56-467"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-56-467'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-56-467'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-56-467'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-56-467'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      73 URIs      64 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/proc-56-467 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0306
4 schema:author Nc1d0ffca168740beac0b9266fb554b27
5 schema:datePublished 1985
6 schema:datePublishedReg 1985-01-01
7 schema:description Abstract Because of the difference in charge transfer and superlattice formation of the various intercalant species, graphite intercalation compounds (GICs) exhibit a variety of interesting electronic properties and phonon properties. These compounds form monolayered metallic superlattices along the c—axis, in contrast to the multilayered metallic superlattices grown from MBE and sputtering synthesis methods. GICs are generally divided into donor—type and acceptor—type compounds, depending on whether the electrons are transferred to the graphite or from the graphite. The modification of the electronic energy bands of GICs by charge transfer is analogous to that of the nipi superlattices. Because of the strong electron affinity of hydrogen relative to that of graphite, the addition of hydrogen into donor—type GICs (e.g. K—GICs, KHg—GICs) modifies the charge transfer from the intercalates to the graphite л-bands. Therefore, studies of the donor—type KH x —GICs provide us with new understanding of the variation of the electronic properties of alkali—metal GICs as the as charge transfer is modified.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1e3779d1a6f643c2ab10aab1d2ffe6df
12 sg:journal.1297379
13 schema:keywords GIC
14 MBE
15 Structural
16 acceptor-type compounds
17 addition
18 addition of hydrogen
19 affinity
20 alkali metal GICs
21 axis
22 band
23 charge transfer
24 compound forms
25 compounds
26 contrast
27 differences
28 electron affinity
29 electronic energy bands
30 electronic properties
31 electrons
32 energy bands
33 form
34 formation
35 graphite
36 graphite intercalation
37 hydrogen
38 intercalant species
39 intercalates
40 intercalation
41 interesting electronic properties
42 metallic superlattices
43 method
44 modification
45 new understanding
46 nipi superlattices
47 phonon properties
48 potassium hydrogen
49 properties
50 species
51 strong electron affinity
52 study
53 superlattice formation
54 superlattices
55 synthesis method
56 transfer
57 understanding
58 variation
59 variety
60 schema:name STRUCTURAL AND ELECTRONIC PROPERTIES OF POTASSIUM HYDROGEN INTERCALATED GRAPHITE
61 schema:pagination 467
62 schema:productId N93026a0d6fb54847ba52c6fdd6fa53b6
63 Nde6fdf95fe7c4b5b8daee5dcf538146b
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067945064
65 https://doi.org/10.1557/proc-56-467
66 schema:sdDatePublished 2022-05-10T09:42
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N5255caaf7eb4482dab3019fa414b6eed
69 schema:url https://doi.org/10.1557/proc-56-467
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N1e3779d1a6f643c2ab10aab1d2ffe6df schema:volumeNumber 56
74 rdf:type schema:PublicationVolume
75 N3d75b3e9d83f4b09ac8286bbc6b9bc7d rdf:first sg:person.01106534704.27
76 rdf:rest rdf:nil
77 N5255caaf7eb4482dab3019fa414b6eed schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N93026a0d6fb54847ba52c6fdd6fa53b6 schema:name doi
80 schema:value 10.1557/proc-56-467
81 rdf:type schema:PropertyValue
82 N9b7ea7a29c0442869e9c3a29f5713626 rdf:first sg:person.011542125231.40
83 rdf:rest Nc502f0a8d53942eba783dfab7ebe1f33
84 Nc1d0ffca168740beac0b9266fb554b27 rdf:first sg:person.013712724175.39
85 rdf:rest N9b7ea7a29c0442869e9c3a29f5713626
86 Nc502f0a8d53942eba783dfab7ebe1f33 rdf:first sg:person.0762130616.38
87 rdf:rest N3d75b3e9d83f4b09ac8286bbc6b9bc7d
88 Nde6fdf95fe7c4b5b8daee5dcf538146b schema:name dimensions_id
89 schema:value pub.1067945064
90 rdf:type schema:PropertyValue
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
95 schema:name Inorganic Chemistry
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Chemistry (incl. Structural)
99 rdf:type schema:DefinedTerm
100 sg:journal.1297379 schema:issn 0272-9172
101 2059-8521
102 schema:name MRS Advances
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.01106534704.27 schema:affiliation grid-institutes:None
106 schema:familyName Dresselhaus
107 schema:givenName G.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106534704.27
109 rdf:type schema:Person
110 sg:person.011542125231.40 schema:affiliation grid-institutes:None
111 schema:familyName Enoki
112 schema:givenName T.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542125231.40
114 rdf:type schema:Person
115 sg:person.013712724175.39 schema:affiliation grid-institutes:grid.116068.8
116 schema:familyName Yeh
117 schema:givenName N. C.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013712724175.39
119 rdf:type schema:Person
120 sg:person.0762130616.38 schema:affiliation grid-institutes:grid.116068.8
121 schema:familyName Salamanca–Riba
122 schema:givenName L.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762130616.38
124 rdf:type schema:Person
125 grid-institutes:None schema:alternateName FBNML
126 Molecular Institute, Okazaki, Japan
127 schema:name FBNML
128 Molecular Institute, Okazaki, Japan
129 rdf:type schema:Organization
130 grid-institutes:grid.116068.8 schema:alternateName Massachusetts Institute of Technology, Cambridge, MA
131 schema:name Massachusetts Institute of Technology, Cambridge, MA
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...