Ontology type: schema:ScholarlyArticle
1996
AUTHORSM. E. Brenchley, D. J. Dunstan, P. Kidd, A. Kelly
ABSTRACTWe propose an athermal strengthening mechanism for high-temperature structural materials in which large coherency strains are built in to a layered structure in order to prevent dislocation mulitplication mechanism from functioning. A practical model system is provided by semiconductor strained-layer superlattices of InGaAs grown on InP. We report results from highresolution X-ray diffraction and from direct tensile testing which provide evidence for athermal strengthening. A discussion of methods of micro-mechanical testing is also included. More... »
PAGES147
http://scigraph.springernature.com/pub.10.1557/proc-434-147
DOIhttp://dx.doi.org/10.1557/proc-434-147
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1067935798
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, England, M.Brenchley@surrey.ac.uk",
"id": "http://www.grid.ac/institutes/grid.5475.3",
"name": [
"Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, England, M.Brenchley@surrey.ac.uk"
],
"type": "Organization"
},
"familyName": "Brenchley",
"givenName": "M. E.",
"id": "sg:person.010754020723.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754020723.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Queen Mary and Westfield College, London El 4NS, England",
"id": "http://www.grid.ac/institutes/grid.4868.2",
"name": [
"Department of Physics, Queen Mary and Westfield College, London El 4NS, England"
],
"type": "Organization"
},
"familyName": "Dunstan",
"givenName": "D. J.",
"id": "sg:person.016646041113.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646041113.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, England",
"id": "http://www.grid.ac/institutes/grid.5475.3",
"name": [
"Department of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, England"
],
"type": "Organization"
},
"familyName": "Kidd",
"givenName": "P.",
"id": "sg:person.07436761475.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436761475.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England",
"id": "http://www.grid.ac/institutes/grid.5335.0",
"name": [
"Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England"
],
"type": "Organization"
},
"familyName": "Kelly",
"givenName": "A.",
"id": "sg:person.011075003105.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075003105.60"
],
"type": "Person"
}
],
"datePublished": "1996",
"datePublishedReg": "1996-01-01",
"description": "Abstract We propose an athermal strengthening mechanism for high-temperature structural materials in which large coherency strains are built in to a layered structure in order to prevent dislocation mulitplication mechanism from functioning. A practical model system is provided by semiconductor strained-layer superlattices of InGaAs grown on InP. We report results from highresolution X-ray diffraction and from direct tensile testing which provide evidence for athermal strengthening. A discussion of methods of micro-mechanical testing is also included.",
"genre": "article",
"id": "sg:pub.10.1557/proc-434-147",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297379",
"issn": [
"0272-9172",
"2059-8521"
],
"name": "MRS Advances",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"type": "PublicationVolume",
"volumeNumber": "434"
}
],
"keywords": [
"high-temperature structural materials",
"coherency strain",
"micro-mechanical testing",
"highresolution X-ray diffraction",
"direct tensile testing",
"strengthening mechanism",
"high strength",
"structural materials",
"tensile testing",
"athermal strengthening",
"strained-layer superlattices",
"large coherency strains",
"X-ray diffraction",
"high temperature",
"layered structure",
"practical model system",
"InGaAs",
"discussion of methods",
"temperature",
"diffraction",
"strength",
"materials",
"superlattices",
"strengthening",
"testing",
"strains",
"structure",
"system",
"method",
"order",
"mechanism",
"results",
"model system",
"Abstract",
"discussion",
"evidence"
],
"name": "Coherency Strain and High Strength at High Temperature",
"pagination": "147",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1067935798"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1557/proc-434-147"
]
}
],
"sameAs": [
"https://doi.org/10.1557/proc-434-147",
"https://app.dimensions.ai/details/publication/pub.1067935798"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_296.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1557/proc-434-147"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-434-147'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-434-147'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-434-147'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-434-147'
This table displays all metadata directly associated to this object as RDF triples.
119 TRIPLES
20 PREDICATES
60 URIs
52 LITERALS
5 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1557/proc-434-147 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N45a03eb439a94253b3f435e83b090d74 |
4 | ″ | schema:datePublished | 1996 |
5 | ″ | schema:datePublishedReg | 1996-01-01 |
6 | ″ | schema:description | Abstract We propose an athermal strengthening mechanism for high-temperature structural materials in which large coherency strains are built in to a layered structure in order to prevent dislocation mulitplication mechanism from functioning. A practical model system is provided by semiconductor strained-layer superlattices of InGaAs grown on InP. We report results from highresolution X-ray diffraction and from direct tensile testing which provide evidence for athermal strengthening. A discussion of methods of micro-mechanical testing is also included. |
7 | ″ | schema:genre | article |
8 | ″ | schema:isAccessibleForFree | false |
9 | ″ | schema:isPartOf | Ndca7c80fb5ba4cbcb797961441c2116a |
10 | ″ | ″ | sg:journal.1297379 |
11 | ″ | schema:keywords | Abstract |
12 | ″ | ″ | InGaAs |
13 | ″ | ″ | X-ray diffraction |
14 | ″ | ″ | athermal strengthening |
15 | ″ | ″ | coherency strain |
16 | ″ | ″ | diffraction |
17 | ″ | ″ | direct tensile testing |
18 | ″ | ″ | discussion |
19 | ″ | ″ | discussion of methods |
20 | ″ | ″ | evidence |
21 | ″ | ″ | high strength |
22 | ″ | ″ | high temperature |
23 | ″ | ″ | high-temperature structural materials |
24 | ″ | ″ | highresolution X-ray diffraction |
25 | ″ | ″ | large coherency strains |
26 | ″ | ″ | layered structure |
27 | ″ | ″ | materials |
28 | ″ | ″ | mechanism |
29 | ″ | ″ | method |
30 | ″ | ″ | micro-mechanical testing |
31 | ″ | ″ | model system |
32 | ″ | ″ | order |
33 | ″ | ″ | practical model system |
34 | ″ | ″ | results |
35 | ″ | ″ | strained-layer superlattices |
36 | ″ | ″ | strains |
37 | ″ | ″ | strength |
38 | ″ | ″ | strengthening |
39 | ″ | ″ | strengthening mechanism |
40 | ″ | ″ | structural materials |
41 | ″ | ″ | structure |
42 | ″ | ″ | superlattices |
43 | ″ | ″ | system |
44 | ″ | ″ | temperature |
45 | ″ | ″ | tensile testing |
46 | ″ | ″ | testing |
47 | ″ | schema:name | Coherency Strain and High Strength at High Temperature |
48 | ″ | schema:pagination | 147 |
49 | ″ | schema:productId | Nd8442f3774464e52a07013328905fce0 |
50 | ″ | ″ | Nff9a9b2a974c407b9d59409e0872f8ba |
51 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067935798 |
52 | ″ | ″ | https://doi.org/10.1557/proc-434-147 |
53 | ″ | schema:sdDatePublished | 2022-08-04T16:53 |
54 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
55 | ″ | schema:sdPublisher | N1dc7d69578cf405ea9d3e48e9a2186f5 |
56 | ″ | schema:url | https://doi.org/10.1557/proc-434-147 |
57 | ″ | sgo:license | sg:explorer/license/ |
58 | ″ | sgo:sdDataset | articles |
59 | ″ | rdf:type | schema:ScholarlyArticle |
60 | N1dc7d69578cf405ea9d3e48e9a2186f5 | schema:name | Springer Nature - SN SciGraph project |
61 | ″ | rdf:type | schema:Organization |
62 | N45a03eb439a94253b3f435e83b090d74 | rdf:first | sg:person.010754020723.65 |
63 | ″ | rdf:rest | Nb5d690469b89419da7bc333cae4e31e5 |
64 | Naf665131e8974945a4cc4c64a832f46a | rdf:first | sg:person.011075003105.60 |
65 | ″ | rdf:rest | rdf:nil |
66 | Nb5d690469b89419da7bc333cae4e31e5 | rdf:first | sg:person.016646041113.50 |
67 | ″ | rdf:rest | Nbac84a7bf22a497c8d06ad1b79a6d7c1 |
68 | Nbac84a7bf22a497c8d06ad1b79a6d7c1 | rdf:first | sg:person.07436761475.92 |
69 | ″ | rdf:rest | Naf665131e8974945a4cc4c64a832f46a |
70 | Nd8442f3774464e52a07013328905fce0 | schema:name | dimensions_id |
71 | ″ | schema:value | pub.1067935798 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | Ndca7c80fb5ba4cbcb797961441c2116a | schema:volumeNumber | 434 |
74 | ″ | rdf:type | schema:PublicationVolume |
75 | Nff9a9b2a974c407b9d59409e0872f8ba | schema:name | doi |
76 | ″ | schema:value | 10.1557/proc-434-147 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
79 | ″ | schema:name | Engineering |
80 | ″ | rdf:type | schema:DefinedTerm |
81 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
82 | ″ | schema:name | Materials Engineering |
83 | ″ | rdf:type | schema:DefinedTerm |
84 | sg:journal.1297379 | schema:issn | 0272-9172 |
85 | ″ | ″ | 2059-8521 |
86 | ″ | schema:name | MRS Advances |
87 | ″ | schema:publisher | Springer Nature |
88 | ″ | rdf:type | schema:Periodical |
89 | sg:person.010754020723.65 | schema:affiliation | grid-institutes:grid.5475.3 |
90 | ″ | schema:familyName | Brenchley |
91 | ″ | schema:givenName | M. E. |
92 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754020723.65 |
93 | ″ | rdf:type | schema:Person |
94 | sg:person.011075003105.60 | schema:affiliation | grid-institutes:grid.5335.0 |
95 | ″ | schema:familyName | Kelly |
96 | ″ | schema:givenName | A. |
97 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011075003105.60 |
98 | ″ | rdf:type | schema:Person |
99 | sg:person.016646041113.50 | schema:affiliation | grid-institutes:grid.4868.2 |
100 | ″ | schema:familyName | Dunstan |
101 | ″ | schema:givenName | D. J. |
102 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646041113.50 |
103 | ″ | rdf:type | schema:Person |
104 | sg:person.07436761475.92 | schema:affiliation | grid-institutes:grid.5475.3 |
105 | ″ | schema:familyName | Kidd |
106 | ″ | schema:givenName | P. |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436761475.92 |
108 | ″ | rdf:type | schema:Person |
109 | grid-institutes:grid.4868.2 | schema:alternateName | Department of Physics, Queen Mary and Westfield College, London El 4NS, England |
110 | ″ | schema:name | Department of Physics, Queen Mary and Westfield College, London El 4NS, England |
111 | ″ | rdf:type | schema:Organization |
112 | grid-institutes:grid.5335.0 | schema:alternateName | Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England |
113 | ″ | schema:name | Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England |
114 | ″ | rdf:type | schema:Organization |
115 | grid-institutes:grid.5475.3 | schema:alternateName | Department of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, England |
116 | ″ | ″ | Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, England, M.Brenchley@surrey.ac.uk |
117 | ″ | schema:name | Department of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, England |
118 | ″ | ″ | Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, England, M.Brenchley@surrey.ac.uk |
119 | ″ | rdf:type | schema:Organization |