Dendrite Tip-Shape Characteristics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995

AUTHORS

J.C. LaCombe, M.B. Koss, L.T. Bushnell, K.D. de Jager, M.E. Glicksman

ABSTRACT

ABSTRACT The assumption that dendrite tips are parabolic bodies of revolution pervades many of the theories and experiments addressing dendritic growth. This assumption, while reasonable, is known to become less valid as regions of interest further from the tip of the dendrite are considered. Experimental measurements were made on pure succinonitrile dendrites at several super coolings. The equation that describes the dendrite tip profile is extended from a second order polynomial (paraboloidal) form to one that includes higher-order terms. The deviation of a dendrite tip from a parabolic body of revolution can be characterized by a parameter obtained from the coefficient of the fourth-order term describing the profile. This dimensionless parameter, Q, is found to be a function of the profile orientation only, independent of supercooling. More... »

PAGES

133

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/proc-398-133

DOI

http://dx.doi.org/10.1557/proc-398-133

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067932953


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LaCombe", 
        "givenName": "J.C.", 
        "id": "sg:person.014003067732.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koss", 
        "givenName": "M.B.", 
        "id": "sg:person.013371002302.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bushnell", 
        "givenName": "L.T.", 
        "id": "sg:person.016517275741.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016517275741.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Jager", 
        "givenName": "K.D.", 
        "id": "sg:person.0600555426.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600555426.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glicksman", 
        "givenName": "M.E.", 
        "id": "sg:person.010720014261.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/proc-367-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067930681", 
          "https://doi.org/10.1557/proc-367-13"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "ABSTRACT The assumption that dendrite tips are parabolic bodies of revolution pervades many of the theories and experiments addressing dendritic growth. This assumption, while reasonable, is known to become less valid as regions of interest further from the tip of the dendrite are considered. Experimental measurements were made on pure succinonitrile dendrites at several super coolings. The equation that describes the dendrite tip profile is extended from a second order polynomial (paraboloidal) form to one that includes higher-order terms. The deviation of a dendrite tip from a parabolic body of revolution can be characterized by a parameter obtained from the coefficient of the fourth-order term describing the profile. This dimensionless parameter, Q, is found to be a function of the profile orientation only, independent of supercooling.", 
    "genre": "article", 
    "id": "sg:pub.10.1557/proc-398-133", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297379", 
        "issn": [
          "0272-9172", 
          "2059-8521"
        ], 
        "name": "MRS Advances", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "398"
      }
    ], 
    "keywords": [
      "parabolic body", 
      "second-order polynomial form", 
      "fourth-order terms", 
      "polynomial form", 
      "higher order terms", 
      "dimensionless parameters", 
      "experimental measurements", 
      "equations", 
      "assumption", 
      "theory", 
      "parameters", 
      "terms", 
      "dendritic growth", 
      "region of interest", 
      "dendrites", 
      "one", 
      "deviation", 
      "dendrite tip", 
      "coefficient", 
      "function", 
      "profile orientation", 
      "experiments", 
      "interest", 
      "measurements", 
      "tip profile", 
      "profile", 
      "form", 
      "orientation", 
      "Abstract", 
      "tip", 
      "body", 
      "region", 
      "cooling", 
      "supercooling", 
      "characteristics", 
      "pervade", 
      "growth", 
      "revolution", 
      "super cooling", 
      "succinonitrile dendrites"
    ], 
    "name": "Dendrite Tip-Shape Characteristics", 
    "pagination": "133", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067932953"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/proc-398-133"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/proc-398-133", 
      "https://app.dimensions.ai/details/publication/pub.1067932953"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_300.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/proc-398-133"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-398-133'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-398-133'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-398-133'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-398-133'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      22 PREDICATES      66 URIs      57 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/proc-398-133 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne5dd0170fdf04781ad90376f4ab90e38
4 schema:citation sg:pub.10.1557/proc-367-13
5 schema:datePublished 1995
6 schema:datePublishedReg 1995-01-01
7 schema:description ABSTRACT The assumption that dendrite tips are parabolic bodies of revolution pervades many of the theories and experiments addressing dendritic growth. This assumption, while reasonable, is known to become less valid as regions of interest further from the tip of the dendrite are considered. Experimental measurements were made on pure succinonitrile dendrites at several super coolings. The equation that describes the dendrite tip profile is extended from a second order polynomial (paraboloidal) form to one that includes higher-order terms. The deviation of a dendrite tip from a parabolic body of revolution can be characterized by a parameter obtained from the coefficient of the fourth-order term describing the profile. This dimensionless parameter, Q, is found to be a function of the profile orientation only, independent of supercooling.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6fc97088cc5d439d8c405fbecc8496d6
12 sg:journal.1297379
13 schema:keywords Abstract
14 assumption
15 body
16 characteristics
17 coefficient
18 cooling
19 dendrite tip
20 dendrites
21 dendritic growth
22 deviation
23 dimensionless parameters
24 equations
25 experimental measurements
26 experiments
27 form
28 fourth-order terms
29 function
30 growth
31 higher order terms
32 interest
33 measurements
34 one
35 orientation
36 parabolic body
37 parameters
38 pervade
39 polynomial form
40 profile
41 profile orientation
42 region
43 region of interest
44 revolution
45 second-order polynomial form
46 succinonitrile dendrites
47 super cooling
48 supercooling
49 terms
50 theory
51 tip
52 tip profile
53 schema:name Dendrite Tip-Shape Characteristics
54 schema:pagination 133
55 schema:productId N7c0684f06be741b3805344dc100de9d2
56 Nb20d692e7b0a40bb942141c866da7cf1
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067932953
58 https://doi.org/10.1557/proc-398-133
59 schema:sdDatePublished 2022-06-01T22:01
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N006ab6d7d0fc4700b75ae89f35e07cdc
62 schema:url https://doi.org/10.1557/proc-398-133
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N006ab6d7d0fc4700b75ae89f35e07cdc schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N085d2f7a37d9414fbe71dd64662c6884 rdf:first sg:person.0600555426.88
69 rdf:rest N3bbc985e2b99401c91bbe4639a4a043f
70 N2221e0d044c14124b444324c7c0318fb rdf:first sg:person.013371002302.98
71 rdf:rest Nf49768486fd44e3ba8b2a759cab502ed
72 N3bbc985e2b99401c91bbe4639a4a043f rdf:first sg:person.010720014261.43
73 rdf:rest rdf:nil
74 N6fc97088cc5d439d8c405fbecc8496d6 schema:volumeNumber 398
75 rdf:type schema:PublicationVolume
76 N7c0684f06be741b3805344dc100de9d2 schema:name dimensions_id
77 schema:value pub.1067932953
78 rdf:type schema:PropertyValue
79 Nb20d692e7b0a40bb942141c866da7cf1 schema:name doi
80 schema:value 10.1557/proc-398-133
81 rdf:type schema:PropertyValue
82 Ne5dd0170fdf04781ad90376f4ab90e38 rdf:first sg:person.014003067732.41
83 rdf:rest N2221e0d044c14124b444324c7c0318fb
84 Nf49768486fd44e3ba8b2a759cab502ed rdf:first sg:person.016517275741.07
85 rdf:rest N085d2f7a37d9414fbe71dd64662c6884
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:journal.1297379 schema:issn 0272-9172
93 2059-8521
94 schema:name MRS Advances
95 schema:publisher Springer Nature
96 rdf:type schema:Periodical
97 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.33647.35
98 schema:familyName Glicksman
99 schema:givenName M.E.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
101 rdf:type schema:Person
102 sg:person.013371002302.98 schema:affiliation grid-institutes:grid.33647.35
103 schema:familyName Koss
104 schema:givenName M.B.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371002302.98
106 rdf:type schema:Person
107 sg:person.014003067732.41 schema:affiliation grid-institutes:grid.33647.35
108 schema:familyName LaCombe
109 schema:givenName J.C.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003067732.41
111 rdf:type schema:Person
112 sg:person.016517275741.07 schema:affiliation grid-institutes:grid.33647.35
113 schema:familyName Bushnell
114 schema:givenName L.T.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016517275741.07
116 rdf:type schema:Person
117 sg:person.0600555426.88 schema:affiliation grid-institutes:grid.33647.35
118 schema:familyName de Jager
119 schema:givenName K.D.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600555426.88
121 rdf:type schema:Person
122 sg:pub.10.1557/proc-367-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067930681
123 https://doi.org/10.1557/proc-367-13
124 rdf:type schema:CreativeWork
125 grid-institutes:grid.33647.35 schema:alternateName Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY
126 schema:name Rensselaer Polytechnic Institute, Materials Science and Engineering Department, Troy, NY
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...