Tem Study of Dislocations in Plastically Deformed AlN View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992

AUTHORS

V. Audurier, J. L. Demenet, J. Rabier

ABSTRACT

ABSTRACT AlN ceramics were plastically deformed using uniaxial compression under hydrostatic pressure between room temperature (RT) and 800°C. Deformation microstructures have been studied by Transmission Electron Microscopy (TEM) using the weak beam technique. The deformation substructure at RT is characterized by perfect glide loops with 1/3<1120> Burgers vector in (0001) elongated in the screw direction. When deformation temperature increases, the screw character is associated to cross slip events and dislocation dipolesare found. In the investigated temperature range, slip of dislocations with 1/3<1120> Burgers vector is also evidenced on prismatic planes. Weak beam observations failed to evidence any dislocation splitting. Some of these dislocation properties, similar to those of III-V compound semiconductors, suggest that electronic doping effects could be used to control plastic behaviour of covalent ceramics. More... »

PAGES

475

References to SciGraph publications

  • 1980-08. Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure in JOURNAL OF MATERIALS SCIENCE
  • 1989-05. Extended defects in sintered AIN in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1557/proc-242-475

    DOI

    http://dx.doi.org/10.1557/proc-242-475

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1067919933


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Audurier", 
            "givenName": "V.", 
            "id": "sg:person.011346235505.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011346235505.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Demenet", 
            "givenName": "J. L.", 
            "id": "sg:person.010362207035.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362207035.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rabier", 
            "givenName": "J.", 
            "id": "sg:person.014100575451.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100575451.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00550614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041923175", 
              "https://doi.org/10.1007/bf00550614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01105676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045300686", 
              "https://doi.org/10.1007/bf01105676"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992", 
        "datePublishedReg": "1992-01-01", 
        "description": "ABSTRACT AlN ceramics were plastically deformed using uniaxial compression under hydrostatic pressure between room temperature (RT) and 800\u00b0C. Deformation microstructures have been studied by Transmission Electron Microscopy (TEM) using the weak beam technique. The deformation substructure at RT is characterized by perfect glide loops with 1/3<1120> Burgers vector in (0001) elongated in the screw direction. When deformation temperature increases, the screw character is associated to cross slip events and dislocation dipolesare found. In the investigated temperature range, slip of dislocations with 1/3<1120> Burgers vector is also evidenced on prismatic planes. Weak beam observations failed to evidence any dislocation splitting. Some of these dislocation properties, similar to those of III-V compound semiconductors, suggest that electronic doping effects could be used to control plastic behaviour of covalent ceramics.", 
        "genre": "article", 
        "id": "sg:pub.10.1557/proc-242-475", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297379", 
            "issn": [
              "0272-9172", 
              "2059-8521"
            ], 
            "name": "MRS Advances", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "242"
          }
        ], 
        "keywords": [
          "transmission electron microscopy", 
          "deformation temperature increases", 
          "room temperature", 
          "slip of dislocations", 
          "electronic doping effects", 
          "Burgers vector", 
          "deformation substructure", 
          "covalent ceramics", 
          "AlN ceramics", 
          "plastic behavior", 
          "deformation microstructures", 
          "uniaxial compression", 
          "glide loops", 
          "compound semiconductors", 
          "Weak beam observations", 
          "weak-beam technique", 
          "TEM studies", 
          "electron microscopy", 
          "prismatic planes", 
          "doping effect", 
          "Plastically Deformed", 
          "dislocation splitting", 
          "dislocation properties", 
          "screw character", 
          "ceramics", 
          "beam technique", 
          "temperature range", 
          "temperature increase", 
          "beam observations", 
          "hydrostatic pressure", 
          "microstructure", 
          "slip events", 
          "dislocations", 
          "semiconductors", 
          "slip", 
          "screw direction", 
          "microscopy", 
          "temperature", 
          "vector", 
          "deformed", 
          "compression", 
          "properties", 
          "splitting", 
          "loop", 
          "substructure", 
          "plane", 
          "pressure", 
          "behavior", 
          "technique", 
          "range", 
          "direction", 
          "increase", 
          "effect", 
          "observations", 
          "study", 
          "character", 
          "events"
        ], 
        "name": "Tem Study of Dislocations in Plastically Deformed AlN", 
        "pagination": "475", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1067919933"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1557/proc-242-475"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1557/proc-242-475", 
          "https://app.dimensions.ai/details/publication/pub.1067919933"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_233.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1557/proc-242-475"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-242-475'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-242-475'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-242-475'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-242-475'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      22 PREDICATES      84 URIs      74 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1557/proc-242-475 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N3913118211854407913d338f5ea641dc
    4 schema:citation sg:pub.10.1007/bf00550614
    5 sg:pub.10.1007/bf01105676
    6 schema:datePublished 1992
    7 schema:datePublishedReg 1992-01-01
    8 schema:description ABSTRACT AlN ceramics were plastically deformed using uniaxial compression under hydrostatic pressure between room temperature (RT) and 800°C. Deformation microstructures have been studied by Transmission Electron Microscopy (TEM) using the weak beam technique. The deformation substructure at RT is characterized by perfect glide loops with 1/3<1120> Burgers vector in (0001) elongated in the screw direction. When deformation temperature increases, the screw character is associated to cross slip events and dislocation dipolesare found. In the investigated temperature range, slip of dislocations with 1/3<1120> Burgers vector is also evidenced on prismatic planes. Weak beam observations failed to evidence any dislocation splitting. Some of these dislocation properties, similar to those of III-V compound semiconductors, suggest that electronic doping effects could be used to control plastic behaviour of covalent ceramics.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Nd3be1e74cb9046dd9f0a7a1d5b2a51aa
    13 sg:journal.1297379
    14 schema:keywords AlN ceramics
    15 Burgers vector
    16 Plastically Deformed
    17 TEM studies
    18 Weak beam observations
    19 beam observations
    20 beam technique
    21 behavior
    22 ceramics
    23 character
    24 compound semiconductors
    25 compression
    26 covalent ceramics
    27 deformation microstructures
    28 deformation substructure
    29 deformation temperature increases
    30 deformed
    31 direction
    32 dislocation properties
    33 dislocation splitting
    34 dislocations
    35 doping effect
    36 effect
    37 electron microscopy
    38 electronic doping effects
    39 events
    40 glide loops
    41 hydrostatic pressure
    42 increase
    43 loop
    44 microscopy
    45 microstructure
    46 observations
    47 plane
    48 plastic behavior
    49 pressure
    50 prismatic planes
    51 properties
    52 range
    53 room temperature
    54 screw character
    55 screw direction
    56 semiconductors
    57 slip
    58 slip events
    59 slip of dislocations
    60 splitting
    61 study
    62 substructure
    63 technique
    64 temperature
    65 temperature increase
    66 temperature range
    67 transmission electron microscopy
    68 uniaxial compression
    69 vector
    70 weak-beam technique
    71 schema:name Tem Study of Dislocations in Plastically Deformed AlN
    72 schema:pagination 475
    73 schema:productId N557d33a8c96c4affb7d08efff785f9dd
    74 N994a01bf9d2b400995a2e7e0fec5a64e
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067919933
    76 https://doi.org/10.1557/proc-242-475
    77 schema:sdDatePublished 2022-05-20T07:19
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Ncc423163865f4202b47aa1b48edc7bd8
    80 schema:url https://doi.org/10.1557/proc-242-475
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N3913118211854407913d338f5ea641dc rdf:first sg:person.011346235505.30
    85 rdf:rest N7446023d53cb4f8790abd7c8d11075aa
    86 N557d33a8c96c4affb7d08efff785f9dd schema:name doi
    87 schema:value 10.1557/proc-242-475
    88 rdf:type schema:PropertyValue
    89 N7446023d53cb4f8790abd7c8d11075aa rdf:first sg:person.010362207035.25
    90 rdf:rest N9e37e5c42ec14a4ea95702cdc48046d0
    91 N994a01bf9d2b400995a2e7e0fec5a64e schema:name dimensions_id
    92 schema:value pub.1067919933
    93 rdf:type schema:PropertyValue
    94 N9e37e5c42ec14a4ea95702cdc48046d0 rdf:first sg:person.014100575451.86
    95 rdf:rest rdf:nil
    96 Ncc423163865f4202b47aa1b48edc7bd8 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 Nd3be1e74cb9046dd9f0a7a1d5b2a51aa schema:volumeNumber 242
    99 rdf:type schema:PublicationVolume
    100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Engineering
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Materials Engineering
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1297379 schema:issn 0272-9172
    107 2059-8521
    108 schema:name MRS Advances
    109 schema:publisher Springer Nature
    110 rdf:type schema:Periodical
    111 sg:person.010362207035.25 schema:affiliation grid-institutes:None
    112 schema:familyName Demenet
    113 schema:givenName J. L.
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362207035.25
    115 rdf:type schema:Person
    116 sg:person.011346235505.30 schema:affiliation grid-institutes:None
    117 schema:familyName Audurier
    118 schema:givenName V.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011346235505.30
    120 rdf:type schema:Person
    121 sg:person.014100575451.86 schema:affiliation grid-institutes:None
    122 schema:familyName Rabier
    123 schema:givenName J.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100575451.86
    125 rdf:type schema:Person
    126 sg:pub.10.1007/bf00550614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041923175
    127 https://doi.org/10.1007/bf00550614
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01105676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045300686
    130 https://doi.org/10.1007/bf01105676
    131 rdf:type schema:CreativeWork
    132 grid-institutes:None schema:alternateName Laboratoire de Métallurgie Physique, U.R.A. 131 CNRS Faculté des Sciences 86022 Poitiers Cedex, France
    133 schema:name Laboratoire de Métallurgie Physique, U.R.A. 131 CNRS Faculté des Sciences 86022 Poitiers Cedex, France
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...