Ontology type: schema:ScholarlyArticle
1992
AUTHORSV. Audurier, J. L. Demenet, J. Rabier
ABSTRACTABSTRACT AlN ceramics were plastically deformed using uniaxial compression under hydrostatic pressure between room temperature (RT) and 800°C. Deformation microstructures have been studied by Transmission Electron Microscopy (TEM) using the weak beam technique. The deformation substructure at RT is characterized by perfect glide loops with 1/3<1120> Burgers vector in (0001) elongated in the screw direction. When deformation temperature increases, the screw character is associated to cross slip events and dislocation dipolesare found. In the investigated temperature range, slip of dislocations with 1/3<1120> Burgers vector is also evidenced on prismatic planes. Weak beam observations failed to evidence any dislocation splitting. Some of these dislocation properties, similar to those of III-V compound semiconductors, suggest that electronic doping effects could be used to control plastic behaviour of covalent ceramics. More... »
PAGES475
http://scigraph.springernature.com/pub.10.1557/proc-242-475
DOIhttp://dx.doi.org/10.1557/proc-242-475
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1067919933
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France"
],
"type": "Organization"
},
"familyName": "Audurier",
"givenName": "V.",
"id": "sg:person.011346235505.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011346235505.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France"
],
"type": "Organization"
},
"familyName": "Demenet",
"givenName": "J. L.",
"id": "sg:person.010362207035.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362207035.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Laboratoire de M\u00e9tallurgie Physique, U.R.A. 131 CNRS Facult\u00e9 des Sciences 86022 Poitiers Cedex, France"
],
"type": "Organization"
},
"familyName": "Rabier",
"givenName": "J.",
"id": "sg:person.014100575451.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100575451.86"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00550614",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041923175",
"https://doi.org/10.1007/bf00550614"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01105676",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045300686",
"https://doi.org/10.1007/bf01105676"
],
"type": "CreativeWork"
}
],
"datePublished": "1992",
"datePublishedReg": "1992-01-01",
"description": "ABSTRACT AlN ceramics were plastically deformed using uniaxial compression under hydrostatic pressure between room temperature (RT) and 800\u00b0C. Deformation microstructures have been studied by Transmission Electron Microscopy (TEM) using the weak beam technique. The deformation substructure at RT is characterized by perfect glide loops with 1/3<1120> Burgers vector in (0001) elongated in the screw direction. When deformation temperature increases, the screw character is associated to cross slip events and dislocation dipolesare found. In the investigated temperature range, slip of dislocations with 1/3<1120> Burgers vector is also evidenced on prismatic planes. Weak beam observations failed to evidence any dislocation splitting. Some of these dislocation properties, similar to those of III-V compound semiconductors, suggest that electronic doping effects could be used to control plastic behaviour of covalent ceramics.",
"genre": "article",
"id": "sg:pub.10.1557/proc-242-475",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297379",
"issn": [
"0272-9172",
"2059-8521"
],
"name": "MRS Advances",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"type": "PublicationVolume",
"volumeNumber": "242"
}
],
"keywords": [
"transmission electron microscopy",
"deformation temperature increases",
"room temperature",
"slip of dislocations",
"electronic doping effects",
"Burgers vector",
"deformation substructure",
"covalent ceramics",
"AlN ceramics",
"plastic behavior",
"deformation microstructures",
"uniaxial compression",
"glide loops",
"compound semiconductors",
"Weak beam observations",
"weak-beam technique",
"TEM studies",
"electron microscopy",
"prismatic planes",
"doping effect",
"Plastically Deformed",
"dislocation splitting",
"dislocation properties",
"screw character",
"ceramics",
"beam technique",
"temperature range",
"temperature increase",
"beam observations",
"hydrostatic pressure",
"microstructure",
"slip events",
"dislocations",
"semiconductors",
"slip",
"screw direction",
"microscopy",
"temperature",
"vector",
"deformed",
"compression",
"properties",
"splitting",
"loop",
"substructure",
"plane",
"pressure",
"behavior",
"technique",
"range",
"direction",
"increase",
"effect",
"observations",
"study",
"character",
"events"
],
"name": "Tem Study of Dislocations in Plastically Deformed AlN",
"pagination": "475",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1067919933"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1557/proc-242-475"
]
}
],
"sameAs": [
"https://doi.org/10.1557/proc-242-475",
"https://app.dimensions.ai/details/publication/pub.1067919933"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_233.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1557/proc-242-475"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-242-475'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-242-475'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-242-475'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-242-475'
This table displays all metadata directly associated to this object as RDF triples.
134 TRIPLES
22 PREDICATES
84 URIs
74 LITERALS
5 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1557/proc-242-475 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N3913118211854407913d338f5ea641dc |
4 | ″ | schema:citation | sg:pub.10.1007/bf00550614 |
5 | ″ | ″ | sg:pub.10.1007/bf01105676 |
6 | ″ | schema:datePublished | 1992 |
7 | ″ | schema:datePublishedReg | 1992-01-01 |
8 | ″ | schema:description | ABSTRACT AlN ceramics were plastically deformed using uniaxial compression under hydrostatic pressure between room temperature (RT) and 800°C. Deformation microstructures have been studied by Transmission Electron Microscopy (TEM) using the weak beam technique. The deformation substructure at RT is characterized by perfect glide loops with 1/3<1120> Burgers vector in (0001) elongated in the screw direction. When deformation temperature increases, the screw character is associated to cross slip events and dislocation dipolesare found. In the investigated temperature range, slip of dislocations with 1/3<1120> Burgers vector is also evidenced on prismatic planes. Weak beam observations failed to evidence any dislocation splitting. Some of these dislocation properties, similar to those of III-V compound semiconductors, suggest that electronic doping effects could be used to control plastic behaviour of covalent ceramics. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Nd3be1e74cb9046dd9f0a7a1d5b2a51aa |
13 | ″ | ″ | sg:journal.1297379 |
14 | ″ | schema:keywords | AlN ceramics |
15 | ″ | ″ | Burgers vector |
16 | ″ | ″ | Plastically Deformed |
17 | ″ | ″ | TEM studies |
18 | ″ | ″ | Weak beam observations |
19 | ″ | ″ | beam observations |
20 | ″ | ″ | beam technique |
21 | ″ | ″ | behavior |
22 | ″ | ″ | ceramics |
23 | ″ | ″ | character |
24 | ″ | ″ | compound semiconductors |
25 | ″ | ″ | compression |
26 | ″ | ″ | covalent ceramics |
27 | ″ | ″ | deformation microstructures |
28 | ″ | ″ | deformation substructure |
29 | ″ | ″ | deformation temperature increases |
30 | ″ | ″ | deformed |
31 | ″ | ″ | direction |
32 | ″ | ″ | dislocation properties |
33 | ″ | ″ | dislocation splitting |
34 | ″ | ″ | dislocations |
35 | ″ | ″ | doping effect |
36 | ″ | ″ | effect |
37 | ″ | ″ | electron microscopy |
38 | ″ | ″ | electronic doping effects |
39 | ″ | ″ | events |
40 | ″ | ″ | glide loops |
41 | ″ | ″ | hydrostatic pressure |
42 | ″ | ″ | increase |
43 | ″ | ″ | loop |
44 | ″ | ″ | microscopy |
45 | ″ | ″ | microstructure |
46 | ″ | ″ | observations |
47 | ″ | ″ | plane |
48 | ″ | ″ | plastic behavior |
49 | ″ | ″ | pressure |
50 | ″ | ″ | prismatic planes |
51 | ″ | ″ | properties |
52 | ″ | ″ | range |
53 | ″ | ″ | room temperature |
54 | ″ | ″ | screw character |
55 | ″ | ″ | screw direction |
56 | ″ | ″ | semiconductors |
57 | ″ | ″ | slip |
58 | ″ | ″ | slip events |
59 | ″ | ″ | slip of dislocations |
60 | ″ | ″ | splitting |
61 | ″ | ″ | study |
62 | ″ | ″ | substructure |
63 | ″ | ″ | technique |
64 | ″ | ″ | temperature |
65 | ″ | ″ | temperature increase |
66 | ″ | ″ | temperature range |
67 | ″ | ″ | transmission electron microscopy |
68 | ″ | ″ | uniaxial compression |
69 | ″ | ″ | vector |
70 | ″ | ″ | weak-beam technique |
71 | ″ | schema:name | Tem Study of Dislocations in Plastically Deformed AlN |
72 | ″ | schema:pagination | 475 |
73 | ″ | schema:productId | N557d33a8c96c4affb7d08efff785f9dd |
74 | ″ | ″ | N994a01bf9d2b400995a2e7e0fec5a64e |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067919933 |
76 | ″ | ″ | https://doi.org/10.1557/proc-242-475 |
77 | ″ | schema:sdDatePublished | 2022-05-20T07:19 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | Ncc423163865f4202b47aa1b48edc7bd8 |
80 | ″ | schema:url | https://doi.org/10.1557/proc-242-475 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | articles |
83 | ″ | rdf:type | schema:ScholarlyArticle |
84 | N3913118211854407913d338f5ea641dc | rdf:first | sg:person.011346235505.30 |
85 | ″ | rdf:rest | N7446023d53cb4f8790abd7c8d11075aa |
86 | N557d33a8c96c4affb7d08efff785f9dd | schema:name | doi |
87 | ″ | schema:value | 10.1557/proc-242-475 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N7446023d53cb4f8790abd7c8d11075aa | rdf:first | sg:person.010362207035.25 |
90 | ″ | rdf:rest | N9e37e5c42ec14a4ea95702cdc48046d0 |
91 | N994a01bf9d2b400995a2e7e0fec5a64e | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1067919933 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N9e37e5c42ec14a4ea95702cdc48046d0 | rdf:first | sg:person.014100575451.86 |
95 | ″ | rdf:rest | rdf:nil |
96 | Ncc423163865f4202b47aa1b48edc7bd8 | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | Nd3be1e74cb9046dd9f0a7a1d5b2a51aa | schema:volumeNumber | 242 |
99 | ″ | rdf:type | schema:PublicationVolume |
100 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Engineering |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Materials Engineering |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | sg:journal.1297379 | schema:issn | 0272-9172 |
107 | ″ | ″ | 2059-8521 |
108 | ″ | schema:name | MRS Advances |
109 | ″ | schema:publisher | Springer Nature |
110 | ″ | rdf:type | schema:Periodical |
111 | sg:person.010362207035.25 | schema:affiliation | grid-institutes:None |
112 | ″ | schema:familyName | Demenet |
113 | ″ | schema:givenName | J. L. |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362207035.25 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.011346235505.30 | schema:affiliation | grid-institutes:None |
117 | ″ | schema:familyName | Audurier |
118 | ″ | schema:givenName | V. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011346235505.30 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.014100575451.86 | schema:affiliation | grid-institutes:None |
122 | ″ | schema:familyName | Rabier |
123 | ″ | schema:givenName | J. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100575451.86 |
125 | ″ | rdf:type | schema:Person |
126 | sg:pub.10.1007/bf00550614 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041923175 |
127 | ″ | ″ | https://doi.org/10.1007/bf00550614 |
128 | ″ | rdf:type | schema:CreativeWork |
129 | sg:pub.10.1007/bf01105676 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045300686 |
130 | ″ | ″ | https://doi.org/10.1007/bf01105676 |
131 | ″ | rdf:type | schema:CreativeWork |
132 | grid-institutes:None | schema:alternateName | Laboratoire de Métallurgie Physique, U.R.A. 131 CNRS Faculté des Sciences 86022 Poitiers Cedex, France |
133 | ″ | schema:name | Laboratoire de Métallurgie Physique, U.R.A. 131 CNRS Faculté des Sciences 86022 Poitiers Cedex, France |
134 | ″ | rdf:type | schema:Organization |